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ABSTRACT

Acoustic propagation in an atmosphere with a specific form of a temperature
profile has been investigated by analytical means. The temperature profile used is
representative of an actual atmospheric profile and contains three free parameters.
Both lapse and inversion cases have been considered. Although ray solution have
been considered the primary emphasis has been on solutions of the acoustic wave
equation with point source where the sound speed varies with height above the ground
corresponding to the assumed temperature profile. The method used to obtain the
solution of the wave equation is based on Hankel transformation of the wave equation,
approximate solution of the transformed equation for wavelength small compared to the
scale of the temperature (or sound speed) profile, and approximate or numerical
inversion of the Hankel transformed solution.  The solution display the characteristics
found in experimental data but extensive comparison between the models and
experimental data has not been carried out.
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1.0 INTRODUCTION

Although the propagation of acoustic signals through the atmosphere has been
studied for many years, and most atmospheric effects are understood in the qualitative
sense, quantitative modeling of most of these effects has become an area of interest
only recently. The dominant effect occurring in atmospheric propagation is the
spreading of acoustic energy associated with a wave propagating in three dimensions
over an ever increasing area, the well known spherical spreading effect, which occurs
in an isothermal, unbounded atmosphere. In addition to this, acoustic waves are
absorbed by the atmosphere, reflected and absorbed at the ground surface, scattered
by turbulence, and refracted by both wind and temperature gradients.

This report summarizes a project to develop models for the propagation of
acoustic signals from a point source above a finite impedance ground surface in the
presence of temperature gradients in the atmosphere. The situation of interest is the
case of sound from a source located within a few meters of the ground propagating to a
receiver located within a few meters of the ground through the temperature gradient
that commonly occurs just above the ground surface. Best[1], Gieger|2)], and
Reynolds[3] all discuss the temperature gradient in this region. Within one to two
meters of the ground the temperature generally goes through a diurnal cycle with a
lapse condition, temperature decreasing with height, occurring in the afternoon and an
inversion condition, temperature increasing with height, at night, see Figure 1.1.
Shortly after sunrise and sunset the atmosphere goes through a nearly isothermal
period when the transition from lapse to inversion or inversion to lapse condition is
under way. This simple picture of the very complex atmospheric dynamics near the
ground can be upset by significant winds which increase the mixing near the ground
surface and tend to lead to a more isothermal situation, or to an overcast which can




prevent a strong lapse condition from developing by blocking the insolation or prevent
an inversion from occurring by blocking the radiation from the ground to the night sky.

References 1,2 and 3 ali discuss the classic logarithmic temperature profile given
by

Zz
T=T°ln(-z—)

o]

(1.1)
which is based on empirical results. This result, although fitting the experimental data
well, certainly is not reasonable either for heights very near the ground or very far
above the ground. In addition, logarithmic functions are generally more difficult to deal

with in an analysis then are algebraic functions. For this latter reason the profile used
in this study is

AT
1t+az

T=T +

(1.2)
This form of the temperature profile is shown in Figure 1.2 along with some

temperature data obtained by Butterworth[4]. The agreement between the data and
the assumed function fitted to this data is excellent. Also as compared to (1.1) the

physical meaning of the parameters in (1.2), T.,, AT, and «, are clear. The assumed

temperature profile asymptotically approaches the temperature T, high above the
ground. Atthe ground the temperature is T, + AT, thus the change in temperature

between the ground and far about the ground is AT. The derivative of temperature




with respect to height evaluated at the ground surface is — a AT. Thus 1/a is the scale
over which the temperature change AT occurs. For example at a height z = 1/a

one-half of the total temperature change AT has occurred. The temperature profile of
(1.2) can be used to represent either a lapse or inversion condition. For a lapse
condition the parameter AT is positive and for an inversion it is negative.

The equation governing the wave motion is the simple acoustic wave equation
with a sound speed varying with height and with a point source term,

1 82 icot
——-5—29- -v2 p= a e o(r) 8(z-s)
a(z) ot nr
(1.3)
At the ground surface, z = 0, a normal impedance boundary condition
_Z.9%
P=r 9z
ip®
(1.4)

is assumed. High above the ground, z — e, only outgoing waves are permitted, a
radiation condition. At the source height, z = s, the pressure field is to be continuous,
and to satisfy the conditions implied by (1.3).

Section 2 contains a discussion of the acoustic rays that characterize both the
lapse and inversion cases for the assumed temperature gradient, (1.2). This both
yields a quantitative understanding of the propagation phenomena, and plays an
integral part in understanding the modeling that follows. The model for the lapse
condition is developed in Section 3 and the inversion model is described in Section 4.
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Section 5 contains a discussion of the conclusions developed during the project.
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20A TIC RAY

Acoustic ray tracing is a relatively simple procedure for an axisymmetric case
which yields a great deal of qualitative information about a given propagation situation.
Only a brief discussion is given here. More detail is given in [5]. For an horizontally

stratified atmosphere the acoustic rays may be determined from an acoustic form of
Snell's law

Cos 6(z) _ Cos 6(s)
az) =~ a(s)

(2.1)
where the source is located at the height s. Here 6(z) is the angle between a ray and
the horizontal at the height z, see Figure 2.1. Thus the right hand side of (2.1) is a

constant for a ray emitted from the source at an initial angle 6(s). Using (1.2) to obtain

2 2 AT 1
a (z)_a“(1 +—.'tm

(2.2)
which describes the sound speed as a function of height, the slope of a ray initially

emitted from the source at an angle 6(s) is determined from (2.1) to be given by

di_ Az+B
_(F-i Cz+D

(2.3)




where

A=of1 +as+$1-(1 +0s ) Cos20(s) ]

(2.4)
B=[1 +as+-.A—rI-(1 +as)(1 +1.3|.—T)Cosae(s)]
(2.5)
C=a(1 +as)Cosze(s)
(2.6)
and
D=(1+’$—T)(1+as)Cosze(s)
(2.7)

Equation (2.3) can be integrated to obtain the ray paths. Different results are obtained
in the lapse and inversion cases and these will be considered separately in the next
two sections.

2.1 Lapse Case

In the lapse case the quantity A is positive and integrating (2.3) to obtain the rays
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/
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yields four different cases. For rays going upward from the source (using the positive
sign in (2.3))

r = F(z, 6(s)) - F(s, 6(s))

(2.6)
for rays going downward initially from the source (using the negative sign)
r="F(s, 6(s)) - F(z, 6(s))

(2.7)
for rays that were initially going downward but have been reflected upward at the
ground (using the positive sign and (2.7))

r=F(z, 6(s)) + F(s, 6(s)) - 2 F(0, 6(s))

(2.8)
and for rays that initially were going downward and were refracted upward before
reaching the ground (again using the positive sign and (2.7))

r=F(z, 6(s)) + F(s, 6(s))
(2.9)
The function F(z, 6(s)) is given by
F(z,e(s))=J(A“ BYCz+D) __E ( 1+6
A 2AJAC ‘1-¢
(2.10)
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where

E=AD-BC

.Arl)(-g)(1+as)00sze(s)

=a(l1+0s+

(2.11)
and

¢-\/ C(Az+B)
"\ 1Al(Cz+D)
(2.12)

The absolute value of A in (2.12) is immaterial in the lapse case where A is always
positive but significant in the case of an inversion where A may change sign.

The rays are identified by the parameter 6(s), the initial angle at which the ray
leaves the source. Thus a ray initially propagating downward and identified by a

particular value of 8(s) will either be reflected upward at the ground or refracted upward
at a turning point. In either case the reflected or reflected ray will be identified by the

same value of 6(s) as the initial ray. Figure 2.2 is an example of the rays calculated
from (2.6) to (2.9).

Setting 8(z) = 0 in (2.3) yields an expression for the height at which an initially
downward propagating ray becomes horizontal, the turning point, as



B
= A

(2.13)
Solving this expression for Cos 6(s) yields
R
AT
(1 "’“th)“ +as+?-)
Cos 6(s) = =
1 1 ar
(1+as)( +°‘th+T )
(2.14)

which identifies the ray having a tuming point at a height z,,. The ray that grazes the
ground and is the boundary between reflected and refracted rays can be found by
setting z,, = 0in (2.14). The ray that divides the initially upward and downward
propagating rays is identified by 6(s) = 0.

For the ray that grazes the ground, and is identified by the value of 6(s) defined by
(2.14) with 2,, = 0, the function F(0, 6(s)) = 0 and thus this ray is defined by either (2.8)
or (2.9). Similarly for 6(s) = 0 the ray can either be obtained from (2.6) or (2.9) since on

this ray F(s, 0) = 0. At aturning point F(z,,, 6(s)) = 0 when 6(s) is given by (2.14).

The shadow boundary is more difficult to locate. It is bounded by refracted rays
(2.9) and at a fixed height z is the maximum possible value of r for rays with turning
points below that height. Thus the ray tangent to the shadow boundary or caustic at the
height z is identified by solving the equation




or _9F(z6(s)  9F(s 6) _,
96(s)  96(s) 9 8(s)
(2.15)

for 6(s) and then using that value in (2.9) to determine the location. The derivative in
(2.15) can be obtained from

AT
1+az)(1- -3 1+0z2+—
aF_{( )(1-9) 72}\/ + +T“
a r =1
Y oz(1-y2)2\/1+otz-72(1~o-czz+-.é|.I
AT B
—[1+27%]
+T°°[ i In( 1+¢)
s 1-0
2[1-y]? ‘
(2.16)
where
1+a2z !
= mCOSQ(S)
T
(2.17)

Due to the complexity of this expression an analytic solution is not possible and either

a numerical solution of (2.15) must be obtained or the approximate relations given in
[5] must be used.

10



2.2 Inversion Case

As in the lapse case several different types of rays occur in the inversion case.

Integrating (2.3) with AT/T_ negative also yields three different forms for the function

which determines the rays depending upon whether the quantity A given in (2.4) is
positive, negative or zero. The meaning of these three cases is discussed below. For
rays that are initially angled upward (using the positive sign in (2.3))

r=F(z, 8(s)) - Fi(s, 6(s))

(2.18)
where i = 1, 2, or 3 depending on the initial angle of the ray leaving the source. Rays
with i =1 leave the source a sufficiently large angle upward so they do not have a
turning point and are never refracted downward. The case i =2 corresponds to the
limiting ray that has a turning point at infinite height. Rays described with i = 3 have
turning points at finite height and are alternately refracted downward and reflected
upward at the ground. These are the rays trapped by the inversion.

Rays that initially are angled downward are given by (using the negative sign in
(2.3))

r=F(s, 6(s)) - F(z, 6(s))

(2.19)
for all three cases before they are reflected upward at the ground. The reflected

waves are given by (using the positive sign)

11




r=F(z, 6(s)) + F(s, 6(s)) - 2 F,(0, 6(s))

(2.20)
in all three cases. Note that after reflection the i = 3 rays are refracted downward and

reflected upward from the ground repeatedly. In the case of these i = 3 type rays four
more forms exist. For rays that initially were angled upward (using the negative sign)

r=-F4(z, 6(s)) - F,(s, 6(s)) - 2 n F4(0, 6(s)).

(2.21)
after they have been refracted downward and have been reflected n times from the

ground. For rays that initially were angled upward and have been reflected upward n
times from the ground and have not been refracted downward following that reflection

r = F3(z, 6(s)) - F(s, 6(s)) -2 n F5(0, 6(s))
(2.22)

Thus an i = 3 type ray leaving the source upward is first described by (2.18) or (2.22)
with n = 0 before it is refracted downward through a turning point. After it is refracted
downward the first time it is described by (2.21) with n = 0. Following its first reflection
from the ground it is given by (2.22) with n = 1, then by (2.21) with n =1 between
refraction through a turning point and reflection, then (2.22) with n =2, etc.

For rays that initially were angled downward (using the positive sign)

r=Fa(z, 6(s)) + F3(s, 6(s)) -2 n F5(0, 6(s))

(2.23)
after they have been reflected upward n times from the ground. For rays that were

12




initially angled downward (using the negative sign)

= - F5(z, 0(s)) + F3(s, 6(s)) -2 n F5(0, 6(s))

(2.24)
after they have been reflected n times from the ground and have been refracted
downward through a turning point.

Thus ani = 3 ray that is initially angled downward at the source will first be
described by (2.19) or (2.24) with n = 0 until it reflects from the ground, then by (2.20) or
(2.23) with n = 1 between reflection and refraction through a turning point. Following
the turning point and before the second reflection (2.24) with n = 1. Then by (2.23) with
n=2,etc.

The functions F; are given by

J(Az+B)(Cz+D) E o+1
F.(z,0 = |
(2 866D A +2AJA_C' n(¢-1 )
(2.25)
fori=1,
3
2 2
F2(z,e(s))=3CJ_§(Cz+D)
(2.26)
fori=2, and

13




J(Az+B)(Cz+D)+ E

4 (1
F.(z, 9(s)) = Tan |\ —
’ A AJ-AC (¢)
(2.27)
fori=3. Asdiscussed above, the i =1 case occurs for A greater then zero or for
Cos 6(s) < Cos © (6 > ©) where
1 AT
+as+
Cos 8 = —_—
1+as
(2.28)

Rays with values of the initial angle, 6(s), greater the value of the angle given by (2.28)
then escape from the trapping effect of the inversion. The ray with A equal to zero or

O(s) = © is the limiting ray that has its turning point at infinity (the i = 2 case), while the

rays with i =3 correspond to negative values of A or Cos 6(s) > Cos® (6(s) < ®), and
are the rays trapped by the ground. Rays with initial downward slopes can be divided
in a similar manner but in all cases at least one reflection occurs before the ray
escapes the trapping effect of the inversion, is the limiting case, or becomes trapped by
the inversion.

Figure 2.3 is an example of the rays calculated from the above equations for the
case of an inversion.

14



3.0 LAP A T

The solution of the problem posed by equations (1.2) to (1.4) incase of AT >0, a
lapse condition, was undertaken first. The general approach used in both the lapse
and inversion cases was to first separated out a sinusoidal time dependence from the
pressure, and then to Hankel transform the governing equations with respect to the
horizontal distance from the sourcs, r, to reduce the number of independent variables
to one, the vertical height, z. This reduces the governing equation for the transformed
independent variable to an ordinary differential equation for which an approximate

solution can be obtained. This solution contains the Hankel transform variable, B,
which replaced the horizontal distance in the transformed governing equation. The
transformed solution must then be inverse transformed to return to physical space.
Because of the complexity of the solution this inverse transform can not be carried out
exactly and either an approximate inversion must be used or the inversion must be
carried out numerically. Both approaches were used in the lapse case. In both of
these approaches it is necessary to to interpret the Hankel transform variable as a
complex variable and to continue the solutions off the real axis for the transform
variable. This is not an intuitive process as the physical interpretation of the transform
variable is lost off the real axis. This process will be discussed in detail below.

With the solution obtained for complex values of the transform variable attention
will be turned to the inversion of the transformed solution. The methods used are the
classical saddle point approach and a Fast Fourier Transform (FFT) based numerical
method. These methods are describe in detail elsewhere and will be only described
briefly here. Finally the results of these approaches will be described.

15




3.1 Transformation and approximate solution

The time dependence in the governing equation and boundary conditions,
equation (1.3) and (1.4) can be removed by assuming

plz, 1, 1) = e Gz, n

(3.1)
The Hankel transform or two-dimension Fourier transform for an axisymmetric function
can be defined [6] as

G(z,B) = jé(z, r) r Jy(Br) d
0

(3.2)
and the inverse transform as

Giz. 1) = [ Gz, B) B Jy(B) o
0

(3.3)
The use of transform methods in solving partial differential equations arises from the
fact that an appropriate transform will convert a particular type of derivatives into an

algebraic term expressed in terms of the transform variable (B in (3.2) and (3.3)) in
place of the original physical independent variable (rin (3.2) and (3.3)). Thus the
number of independent variables in the partial differential equation will be reduced by
one and the transform variable acts only as a parameter in the transformed solution. In

16




the case of Hankel transforms the radial dependence in the Laplacian operator
expressed in cylindrical coordinates for a axisymmetric function is converted to an
algebraic term, see [6] for more details. Applying (3.2) to (1.3) leads to

de

0)2 1+az ) q
+1 ¥— G=-—93(z-s
2 [ 2 - ﬁ] o (z-5)

.,1+az+T—

(3.4)
The term on the right hand side represents the source. The homogeneous form of this
equation would have a solution with an oscillating behavior if the term in square
brackets was positive and an exponential behavior if it was negative. Thus the
transition occurs when the term is zero or

[3——“1- 1+02
"a“ 1+az+-Al
T
(3.5)
Notice that if
1+as !
B=-§- ———ECose(s)
by 1+as+-_r—
(3.6)

then equations (3.5) and (2.14) are very similar and we can interpret (3.5) as giving the

value of B that causes the turning point (the location of the transition from oscillatory to

17



exponential behavior as well as a horizontal ray) to be located at the height z. But (3.6)

remains to be be interpreted. From (2.1) and (2.2), however, one finds that B is equal to

(w/a,,) times the cosine of the angle that a ray, which was initially at an angle 6(s),

makes in the limit as height tends to infinity. Thus just as we have used 6(s) to identify

a ray we can also use the Hankel transform variable B. This discussion emphasizes

the close relationship between the model being developed and the ray description.
These parallels will be also be pointed out below.

If height is nondimensionalized in (3.4) using the scale of the temperature

gradient, a, a uniformly valid approximate solution to the resulting equation can be

obtained, using the method presented by Naytah [7], for large values of w/(a_x) as

A B
G = —=—=—=h,(n(z, B)) + ———=—==h,(n(z, B))
9,(z, B) 1 \I 9,(, B :
(3.7)
where
% AT 1+02 a 2!
g(z,ﬁ)=(1+0(z+-i.—-) AT-(:;:B)
o 1+0z+ T

18



1At 1 1-9
2T“ a 2 In(1+(t))
1-(—=8)
(O]
(3.8)
9
1+02 a_
AT -(—B)
1+(12+-T—'
= = 2
a
1 (—m‘ﬁ)
(3.9)
3
3 2
nep=(31) sap
(3.10)

and

o,z, p) = 9&:B)
0z

(3.11)

The modified Hankel functions h, and h, are defined in [8] by

19



1
31 3
n@=(2) & u2e)
3

(3.12)
and

1

A
n@=(2) & v Ze)
3

(3.13)
A and B are constants that have to be determined. This solution is rather complex and
is expressed in terms of unfamiliar functions. Several important features of this solution
need to be discussed to understand it.
The functions h4(€) and h,(£) have a complicated behavior [8]. For real values of
the argument both h, and h, yield a complex results which is oscillatory with an
algebraic decay of the amplitude for increasing magnitude of the argument. The

function h, can be shown to represent downward propagating waves (for eit as used

here) and h, upward propagating waves. The oscillatory behavior also occurs for h,
when the phase of the argument is equal to 2r/3 and for h, when the phase of the
argument is -2r/3. When the phase of the argument is n/3, hy decays exponentially

and h, grows exponentially. When the phase is -n/3, h, decays exponentially and h,
grows exponentially.

The solution of the point source problem is closely related to the plane wave

20




problem discussed in [9]. In wave problems where transforms have been used the
inverse transform can generally be interpreted as a superposition of plane waves over
a range of angles. In the case of the Hankel transforms used here the limits of

integration on B are from zero to infinity and B can be interpreted as w/a,, Cos 6,_ where
0_ is the angle between a ray and the horizontal in the limit of height tending to infinity

as given in (3.6). Thus a value of § of zero corresponds to a ray which is propagating
vertically upward at infinite height, a value of  of w/a_, corresponds to a horizontal ray

at infinite height, and a value of B of wa,, {[ 1 + az ] /[ 1 + oz + AT/T,, ]}'/2 corresponds to
a ray with imaginary slope at infinity such that its turning point (pcint of horizontal slope)

is located at the height z. Based on this description the waves group themselves into
several different forms.

The first group, 0< B <By=ava. {1 /[ 1+ AT/T_ [}"2, are waves with their turning
points at or below the ground surface and thus are actually reflected at the surface.

These waves plus their reflections constitute the first group. The wave with =B,

grazes the surface and is the limiting ray between the reflected and refracted rays. The

second group, B, <B<B, =wa {[1+az]/[1+az+AT/T_]}2 are waves with a

turning point above the ground and below the observer height z. The waves in this
group consist of those leaving the source in the range of angles described by (3.6) and

their continuation after they have been refracted upward. The third group has B, < <

B= ava.{[1+as]/[1+as+AT/T ]}12. These waves have their turning point above

the observer and below the source. Atthe observers location these waves should yield

21




a exponentially decaying solution. The waves in this group consist of those leaving the
source in the appropriate range of angles and their continuation following refraction

upward. These three groups of rays can all be seen in a ray diagram for a point source
and all initially are propagating downward from the source. In addition there are waves

propagating upward initially. These are in the range 0 < 8 < B but differ from the first

groups in that they do not originate as downward propagating waves that are reflected
or refracted upward. Thus the "reflection” coefficient is missing from these waves.

In addition to the above groups that can be seen in a wave diagram for a point
source, there are several types that are necessary for the superposition given by (3.3)

where B ranges from zero to infinity, but do not occur in a ray diagram for a point
source. Group five consists has B, < B < w/a,., these waves have the turning point

above the source. In addition there are waves with w/a_, < B, these have no physical

interpretation and correspond to complex angles at infinity.
With these concepts let us proceed to the mathematical solution to the problem.

The function g3 given in (3.8) contains four branch points, two at B =+ B, and two at B
=1 w/a,.. The negative branch points are not significant and will not be discussed. On
the real p axis, for 0 < B < B,, g*2(z, B) is real. For B, < B < wa.. g%2(z,p) is positive and
imaginary, and for B > w/a,, g%2(z,B) has a phase of -n at B=w/a,andtendsto a
phase of -r/2 as P tends toward infinity. This is shown in Figure 3.1. The branch line
for g(z,B) = ( g32(z,B))2® can be chosen to be on the line where the phase of g372(z,8) is

-x. This line extends from the first branch point at B, to the second at w/a,. and

22



encloses a small region above the positive real axis, see Figure 3.2. The branches
chosen for g(z,B) yield a phase of zero for 0 < B < B,, &/3 for B, < B < w/a,., and varying
from -27/3 to -n/3 for B > w/a...

Now by considering three cases the various forms of the solution can be
obtained. These are shown in Figure 3.3. The first case is a wave with the turning

point below the surface, 0 < B < B,. The second has the turning point below the source
but above the surface, By < B < B. In this case if the receiver is below the turning point

then B > B, if it is above the turning point then B < B,. The third case has B, <f < w/a,.
and the turning point is above the source. Again if the turning point is above the
receiver then B > B, if the receiver is above the turning point then B < B,. Note that

these waves do not appear in a point source ray diagram but are needed to complete
the solution.

The solutions corresponding to the cases given above require the determination
of the constants in (3.7). To do this a set of conditions are required. As result of the
source terms in (3.4) the solutions separate into at least two forms, one for the region
below the source and one above. The radiation condition, requiring outgoing waves in
the limit as height tends to infinity, requires A to be zero above the turning point for
z > s. Atthe source height, z=s, the solution must be continuous

lim G(z,8) = lim G(z,p)

zZ-s, zZ-s.

(3.14)
and must satisfy

23



G, . 9G, q
lim [—]-lim [—]==—
z-)s_[aZ] z—»s,[aZ] 2n
(3.15)

which is obtained by integrating (3.4) from z = s - £ t0 z = s + £ and taking the limit e—0.
At a turning point continuity is required,

lim G(z,B) = lim G(z,B)

Z—)th . Z92Zyp ,

(3.16)
At the ground surface, z = 0, the required condition is the normal impedance condition
(1.4) which can now be expressed as

G=-2 3G

@p_ oz

(3.17)
Using these conditions, equation (3.4), and the physical situations presented in
Figure 3.2 the following solutions can be obtained. Forz > s

G=K hZ(T\(Z:B)) [ h1('ﬂ(s,l3) + RO hz(Tl(S,B)) ]

(3.18)
forw/a,.>B,>B,>P,>P>0,
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G = K hy(n(z,B)) [ hy(n(s,B) + Ry ha(n(s.B)) ]

forw/a,>B,>B,>p>p,>0,

G = K ha(n(z,B)) ™3 R, [ hy(n(s,B) + Ry ha(n(s,B)) ]

forn/a,>B,>p>p,>p,>0and

G = K[hy(nz.B)) €3+ Rohy(n(z,p)) ] e™>

Ry [ hy(n(s,B) + Ry hy(n(s,B)) ]

foro/a,>B>B,>B,>p,>0.Forz<s

G = K hp(n(s,B)) [ hy(n(z,B) + R, ha(n(z,8)) ]

forwa,.>B,>p,>B,>B>0,

G=K h2(n(ssﬁ)) [ h1(ﬂ(sz) + R1 hZ(n(zaB)) ]

forw/a.>B,>B,>P>B,>0,

25

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)



G = K hy(n(s.B)) &3 R, [ hy(n(z,B) + Ry ho(n(z,B8)) ]

forwa.>B,>B>P,>B,>0and

G =K{[hy(n(s,B)) €3+ Rgyh,(n(s,B)) ] e

Ry [ hy(n(2.B) + Ry ha(n(z,B)) ]

forwa.>B>B, >B,>B >0 Where
K=K, @B gspy=—3——1____ 1
1213V %28 | 0,68
_Th,((0.B) +iwh (n(0.8)
°" thym(0.8) +iyh, MO8
. 0,
1=0 k _ i Z gzz( B)

2pa_ g,0p)
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(3.24)

(3.25)

(3.25)

(3.26)

(3.27)




2
Z ,3)\.3
= 0,
v Poa..( 5 ) 9,(0.B)
(3.28)
and
iy
o 6
R1= N
3
e -iR,
(3.29)

The solutions obtained above are for real values of B, but as discussed above B

must be interpreted as a complex variable. The boundaries between solutions off the
real axis must be chosen as the branch lines used for calculating the function g(z,B),
g(s,B) and g(0,B) from g32(z2,B), etc. as were discussed above. On crossing these
branch lines it should be noted that the phase of g(z,B), g(s,B) and g(0.B)

discontinuously jumps from -2n/3 to 2r/3 and the phase of g,(z,B), g,(s,B) and 8,(0,B)
increases by -2n/3 (since it contains the root of g in the denominator).

Reference [8] presents some results for the modified Hankel functions that are
useful for this type of behavior:
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v ig- i-;-
hyme®)=e “(e  hm)+h,m))

(3.30)
and
i2n
h(ne > )=-hym)
(3.31)

Using these relations the solution as given by equation (3.18) to (3.25) can be rewritten
and the regions of validity determined. For z > s these are

G = K(g(z.B). 92(8,B)) {ha2(n(z,B)) [ hy(n(s.B)) + Ro(g(0.B)) hao(n(s.B))

(3.32)
in region A of B-space as given in Figure 3.4

G = K(g2(2.B), 9(s.B)) {h2(n(z,B)) [ hy(n(s.B)) + Ro(g(0.B) €1 203 hy(n(s,B)) 1}

(3.33)
in region B

G = K(g,(z,Ble- 123, g,(s.B)) {ha(n(z,B)) [ hy(n(s,B) 12%3)
+ Ro(9(0,B) €23 ) hy(n(s,B) 61 2%2) )}

(3.34)

in region C
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G = K(g,(2.B)e" 123, g,(s,B) e-12%3) {h,(n(z,B) €/ 2%3) [ h,(n(s,B) €i2%3)
+ Rq(g(0,B) €127 ) hy(n(s,B) ei 2x3) ]}

(3.35)
in regionD. Forz<s

G = K(g(2,B). 9(s.B)) ha(n(s,B)) [ hy(n(z.,B)) + R, (a(0,8)) ha(n(z.,B)) ]

(3.36)
in region E

G = K(g,(z.B), 9;(s.B)) h2(n(s,B)) [ hy(n(z.B)) + R, (9(0.B) €123 ) hy(n(z,B)) ]

(3.37)
in region F
G = K(g(2,B), 9,(s.B) e ' 2R ) hy(n(s,B)) [ hy(n(z,B) ei2=3)
+ R, (9(0.8) €23 ) hy(n(z,8) ei2n3 ) ]
(3.38)
in region G and
G = K(g,(z,B)e-12%3, g,(s,B) e 1273 ) hy(n(s,B) &1 23 ) [ hy(n(z,B) ei2nB)
+ R, (9(0,B) 61273 ) hy(n(2,8) 61273 ) |
(3.39)
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in region H. To obtain these results it is necessary to recognize that

.2
-

i
R,(g0.8) =R, (@0B)e ° )
(3.40)
From these results and the description of the behavior of the function a(z,B) (and
therefore n) at the branch lines it should be clear that the solution is continuous at the

branch lines even with g(z,B) being discontinuous. This transformed solution must
now be inverted.
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3.2 Lapse Results

Two methods were used to approximately invert the Hankel transform contour
integration which lead to the saddle point method in the insonified region of physical
space and a FFT based numerical method. Neither of these methods will be described
in detail as the basic method is well known in both cases and the specific application
has been described in detail elsewhere.

Both of these approaches are based on the concept that although the inversion
integral (3.3) is defined as being carried out along the real axis, the residue theorem of
complex variables [10] allows the path of integration to be changed provided that there
are no poles of the integrand between the original and modified paths. i poles exist
then additional terms must be included with the integral along the modified path. In the
case of an isothermal atmosphere the additional term due to the pole leads to the
surface wave term. In the lapse case the only possible pole is the due to the
denominator of the term multiplying the upward going wave (the reflection coefficient in

the case where a reflection occurs) being equal to zero. These case has not been

completely examined but in the limit of AT equal to zero it reproduces the surface wave
term. Thus one clearly expects to see a similar behavior in the case of weak lapse
condition. This surface wave like-behavior has not been investigated beyond the point
described above and has not been included in the results given below.

3.2.1 Contour Integration-Saddie Point Method

Integrals of the form
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1©=Jo'*"® ap

c

(3.41)
can be approximately evaluated by the saddle point method if the path of integration C

is such that the ends of the path do not significantly contribute to the integral, £ is a

large parameter, and f(f) has a point where the first derivative is zero. Complex
variable theory indicates that a function can not have maximum in the region where it is
analytic and a point where its first derivative is zero must be a saddle point [10]. Ata

saddle point if the path of integration follows the line of constant real part of f(B) then
the imaginary part {(B) either increases or decreases at a maximum rate. If the path of
integration follows the line of constant imaginary part of f(B) that passes through the
saddle point then the real part of {(B) increases or decreases at a maximum rate. If we

choose to foliow a line of constant real part of f() through the saddle point in the
direction such that the imaginary parnt increases at the maximum rate then the
magnitude of the integrand decrease rapidly as we move away from the saddle point. If
& is large then the only significant part of the integral is near the saddle point and the
integral can be approximated by using the first two non-zero terms in the Taylor series
for f(B) yielding the well known results given in [11].

This method works well when a saddle point exists. However when one does not

exist then an approximate integration can be carried out as described in detail by Ma
[12].

To apply this method to the integrals given by (3.3) with (3.32) to (3.39) both the
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Hankel functions and the modified Hankel functions must be replaced by their

asymptotic expansions and the integral regrouped to extend from negative infinity to
positive infinity. When this is done the result contains twenty terms since the integrand

is different between in the various regions in B-space and in each part of the G function
contains two terms. Thus writing out only the terms of interest for z > s yields

. i(Brerlo @B -g (sB)]-n/2)
— - + . - N -
G(zp) = ... + j K(z.8) e dp
0

Bs ‘ _ . an . ,
+IK7(Z,B)e-'{Br+ [g (Z, )'g (s,)]—ﬂ }dB
B

+ ...

' i{Bredlo @B +o (sB)-29 (OB)]-nr2
+IK,6(Z.3)9 +A[9 @B)+g (s g (OB))-=n }dB
0

Ps

i(Brelg @B +g (sB)]-n/6)

- + B) + B)1-

+ J' K, (z.8) @ dp
Bo

(3.42)
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and forz<s

¢ i{Bredlo (sB)-g (@B)]-x2
G(Z.r)=...+fcs(z,r)e" r+r(g (sP)-g (ZP)]-=x }dB
0

" {Bredlg (5B -g @B)]-xr2)
- + » - J -
+JC7(2,B)9 9 P9 dp

Po

+ ..

. {Brerlo @B +g (sB)-20 (0.8)]-772)
- + B+ .B) - B)]1-=
+[cgepre dp
0

B, a2 a2
-i A , B]-n/
+jC17(z,B)e'{B” [9 @B+g (sB)])-=m }dﬁ

Bo

(3.43)

To find the saddle points the arguement of of exponential term must be differentiated

with respect to B and set equal to zero. On differentiating one finds
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af ® 1+as

(3.44)
where F(z,8(s)) is the function defined in (2.10) and used to describe the rays.
Differentiating the arguments of the exponentials then yields equations (2.6) to (2.9),

the equations defining the rays. Thus the saddle points associated with a particular

point in physical space (in the insonified region) correspond to the values of B (or 6(s)
where the two are related by (3.6)) that defines the two rays passing through the point
in physical space. Just as the rays were interpreted as upward-going-direct waves,
refracted waves, etc. the terms in (3.42) and (3.43) also have the same interpretations.
Determination of the saddle point values then first requires determination of the types of
waves present at a particular physical location and then solution of the appropriate two
of equations (2.6) to (2.9). Once the location of the saddle point has been determined
the classical results may be applied. A computer program for carrying out this
procedure and the resulting equations to approximate the inversion integral have been

given in detail by Cheng [13] and will not be repeated here. A typical result is shown in
Figure 3.5.

As the physical location of the receiver moves into the acoustic shadow real

values of B or 6(s) cease to exist. Ma [12] has suggested an approximate approach
which is also based on contour integration. In this approach the inversion integral

between B, or B, and w/a,, is carried out numerically and the remainder of the integral

extending from negative infinity and to positive infinity are carried out in a manner
similar to the saddle point method. The integral carried out numerically physically
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represents the contributions of the exponentially decaying disturbances due to waves
with turning points above the receiver. Ma [12] also incorporated into his program
Cheng's saddle point method for the insonified region with some changes. A typical
result is shown in Figure 3.6.

Both of these methods suffer from discontinuities as the receiver passes from a
region where the receiver senses a direct and a reflected wave to one where a direct
and a refracted wave would occur. This results not from the transformed solution which
is continuous, but from the large argument approximation that must be made to obtain
the saddle point form (3.41) and from the fact that the argument becomes zero at most
of the boundaries. As a result of these intrinsic problems with the saddle point method
a numerical approach was then applied.

The saddle point method has the appeal of a physical interpretation of the

mathematical steps and results. A purely numerical method loses that interpretation
and the physical insight that comes from it.

3.2.2 Numerical Integration Method

The numerical approach used was developed by Richards and Attenborough [14]
and was applied to the present case by Lloyd [15]. The method approximates the
inversion integral by using a Fast Fourier Transform (FFT) algorithm. To obtain an
integral suitable for the use of the FFT algorithm the Bessel function containing the
horizontal distance dependence must be approximated by its asymptotic expansion.
Three other modifications are then carried out. First, the integration path is modified to
be above the real axis (Richards and Attenborough’s original approach was to
integrate below the axis but they also assumed e-i®.), this avoids the discontinuities at
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the branch points but requires integration up the imaginary axis. Second, the integrand
is modified to make the integral along the imaginary axis zero, but, as claimed by
Richards and Attenborough, to not change the result. Finally an approximate term is
added to account for the finite upper limit and to approximate the integral to infinity.

This approach is described in detail by Lloyd [15] and Figure 3.7 is a typical

result. Disadvantages of this approach are the large amount of computer time required
and that a entire horizontal profile must be obtained at each receiver height. Thus to
obtain a vertical profile many time consuming computer runs must be made and one
point out of several thousand points is actually used from each run. This approach
clearly does not contain the discontinuities present in the saddle point method. Figure
3.8 compares the saddle point method and the purely numerical method. The
agreement is excellent in the insonified region with the exception of the region very
near the shadow boundary. The agreement is good in the initial sound level decrease
as the shadow boundary is crossed but the saturation region deep in the shadow is not
the same for the two methods.

The numerical method often results in oscillations in the sound level at large
distances from the source, this appears to be an artifact of the numerical inversion
method and is dependent on the parameters of the inversion scheme. Also as very
large distances are approached the calculated sound level often increases this is
Clearly due to the numerical inversion method. These points are further discussed by
Lloyd [15] and a listing of Lioyd's program is given in Appendix A.
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4.0 INVERSION SOLUTION

The inversion solution, AT < 0, follows very closely along the lines of the lapse
solution. The governing equation and boundary conditions, (1.2) to (1.4), are identical
in the two cases and the approach using Hankel transforms is also the same. Again the

solution requires analytic continuation off the real p axis. This has proved to be difficuit
and lead to several errors initially. (The solution given in the Sixth Semiannual Report
[18] are incorrect.)

Although the solution can be discussed in terms of rays and the closely related
saddle point method, this approach has not been used to approximately evaluate the
solution in the inversion case. Inthe lapse case only two rays, at most, pass through a
given point. In the inversion case, at large distances from the source, many rays may
pass through a given point due to the "trapping” effect of the inversion. Since the
saddle point method requires all of these rays and their corresponding saddle points to
be located, and this is the most difficult part of the method, the approach becomes
impractical. Thus only the purely numerical method of inversion has been used.

4.1 Transformation and approximate solution

The time dependence is removed from (1.3) as in (3.1) and the resulting equation
Hankel transformed using (3.2) to obtain (3.4). Again the location (in terms of the

transform variable B) of the transition from oscillating to exponential behavior is given

by (3.5). However, since AT/T,, <0 the transition is at a value of § greater then wa_..

Using (3.6) and comparing results to those of Section 2.2 one can interpret the solution
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in the range 0 < B < w/a_ as representing the rays that will escape the trapping effect of

the inversion. These rays either go directly from the source to infinite heights or go
from the source to the ground where a reflection occurs and then go to infinite heights.

In the range w/a_ < B < B_ the solution represents rays that are trapped by the

inversion. The transition given by (3.5) applies to rays in this range. Beyond this range
the rays do not occur in a ray diagram.

The solution of (3.4) can again be approximated by (3.7) and (3.9) through (3.11).
Equation (3.8) must modified by a negative sign on the right hand side yielding

3 2l
2 AT 1+0z a_ 2
2B)=—(1+0az+=m — 2 (=
o“zB)=-( ) —-(-=8)
1+0z2+=—
T
1aT 1 In(1+<l>)

(4.1)

This change is necessary since the region of oscillatory solution is below the turning
point in the inversion case while it was above it in the lapse case (see Nayfeh [7]). In

the inversion case AT/T_<Oandthus® > 1 for 0 <P <w/a_ Itis convenient to note

that we may rewrite the logarithm term in this case as
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(4.2)

to clearly indicate the choice of the branch of logarithm, In(-1) = +i =, the opposite of that
in the lapse case. Thus, in the range 0 < B < w/a,, g32(z,B) ranges from slightly below
the negative real axis to infinity along the negative imaginary axis. For values of B

between w/a,. and B, ranges along the positive real axis from infinity to zero. For real B

greater than B, values of g%2(z,B) are along the positive imaginary axis, see Figure 4.1.

As in the lapse case the boundary between these regions are branch points of the
function g32(z,B) with the branch lines extending downward from the branch points for
Re(p) > 0 in B-space.

The argument of the Hankel functions involves g(z,B) = (g32(z,B))?® and again the
branches must be chosen with care. For 0 € B < w/a_, g(z,B) is chosen such that its
phase ranges from slightly greater then zero (or 2x) at B = 0 to n/3 as the branch point

at B = wa,, is approached from values of B less then w/a,.. In this region the two
modified Hankel functions have an oscillatory and exponential growth or decay

behavior with with one (h4) representing upward traveling and decaying waves and
the other (h,) downward traveling, growing waves. In the range w/a,, < < B, and

g3%2(z,B) is real and positive. The function g(z,B) is chosen to be on the line with phase
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-2n/3. In this case the modified Hankel function h, represents both upward and
downward traveling waves, a standing wave-like phenomena, and h, a downward
traveling wave.

The branch line for g(z,B) = (g%2(z,B))2” needs to be defined to extend these

solutions off of the real axis. Lines of constant phase of g32(z,B) run from the first
branch point to the second in a manner similar to the lapse case, but with the order of
the branch points reversed. Figure 4.2 shows the behavior of these lines of constant
phase. Again a line of constant phase is a convenient branch line.

If the line where the phase of g372(z,B) equals -r/2 is chosen as the branch line for
a(z,B) = (g%?2(z,B))? then the phase of g(z,B) can be made to agree with the desired

values on the real axis as described above. In addition for real B and B, <B, 9(z.B)

has a constant phase of n/3 with h;(n(z,8)) having a decaying exponential behavior for

increasing z and representing the contribution of waves with a turning point below the
receiver's height to the total pressure field.

Using the conditions given in (3.14) to (3.17) and the physical descriptions of the
type of waves that occur in each situation the following solutions can be obtained. For
r

G =K h,(n(sB) + R, hyn(s.B)) ] hyn(z.B))

(4.3)
which is identical to (3.18) for B,>B,> B,>w/a.>p>0,
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G =-K[h,(n(s,B))/ R, + hy(n(s.B)) ] h,(n(z.B)

for B,>B,> B,>B>wa_>0,
2n

G=-Ke > [h,m(sB) /R, +hym(s.8) ] hyn(z.p)

for3,>B,>B> B,>w/a_>0and

G =K [h,(n(sB)) + R, h,(n(s.B)) ] h,(n(z.B))

forB,>B> B,>B,>w/a_ >0. Fors>z
G =K[h,(n(z.B)) + R, hy(n(z,B)) ] hy(n(s,B))

the same as (3.22) for B_>B,> B,>wa_ > p>0,
G=-K[h,n(z.B))/R, +h,(n(z,B)) ] hy(n(s.B)

forB >p,> B,>p>wa >0,
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2R
G=-Ke " [h,(n(zB) /R, +hmzB) ] hyn(s.p)

4.9
forB >B,>p> B,>awva_>0and

G =K [h,(n(z.B)) + R, h,(n(z.8) ] hy(n(s.B))

(4.10)

for >p> B,>B,>w/a_>0. Here K and R, and R, are defined by (3.25) and (3.26)
and

(4.11)

As discussed above these solutions must be continued off the real axis. Asinthe
lapse case the boundaries are chosen as the branch lines for calculating g(z,B), g(s.B)
and g(0,B) from g32(z,B), etc. On crossing these branch lines the phase of g(z,8), g(s,p)

and g(0,B) jumps discontinuously from n/3 to - x and 9,(z,B). 9,(s,B) and g,(0,B) jumps

discontinuously by 2r/3. Using (3.30) and (3.31) solutions (4.3) through (4.10) can be
continued off the axis as
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G = K(g,(z.B). g,(s.B)) [ h,(n(s.B)) + R,(g(0,B)) hy(n(s,B)) 1 h,(n(z,B))

(4.12)
in region A of Figure 4.3
. . ) iﬂ
G=K(g,zB)e °,g(sBe °)[hmspe’)
4n 4n an
+R@0.B) e *)hm(s.p) e > hmzpe *)
(4.13)
in region B,
o 4
G=K(g,zB). gsBe °)[hnspe’)
4 an
+R(9(0.B) e *) hym(s,B) e *)] hy(n(zB)
(4.14)

in region C and
Tl

G = K(g,(z.B). g,(s:B)) [ hy(n(s.B)) + R (9(0,B) e %) h,(n(s,B)) ] h,(n(z.8))

(4.15)
inregionD. Forz<s

G =K(g,(z,B), g,(s.B)) [ h,(n(z.B)) + R (a(0.,B)) h,(n(z,B)) ] h,(n(s.B))

(4.16)
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in region E,

- = o e ii'i
G=K@g,zBe °.g(sBe °)(hmape )
iﬂ . 4nt iﬂt—

+R(gOB) e *)hmzp) e *)hymspe )

(4.17)
in region F,
. ii". i:"-7£
G=Kg,zBe °.g,8)hmzpe )
ii’l i-‘-n-
+Ry(g(0.f) e ) hy(n(s.B)] hynzBe ° )
(4.18)

in region G and
i 4n

G = K(g,(z,B), g,(s.B)) [ h,(n(z.B)) + R (g(0.,B) e ) h,(n(z.B)) ] h,(n(s.B))

(4.19)
in region H.

From these results and the description of the behavior of the function g(z,8) (and
therefore n) at the branch lines it should be clear that the solution is continuous at the

branch lines even with g(z,B) being discontinuous. The transformed solution must now

be inverted using the numerical method developed by Richards and Attenborough [14].
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4.2 Inversion Case Results

As was discussed above the numerical method originally developed by Richards
and Attenborough [14] was used to invert the Hankel transformed solution in the case
of the inversion. This was due to the fact that many rays pass through a given point in
physical space in the case of an inversion and the number of saddle points which exist
equals the number of rays passing though that point. Since finding the saddle points is
the most difficult and time consuming part of that method the approach appeared
impractical in this case. The numerical method used is identical to that of the lapse
case as described by Lioyd [15].

Only a limited number of cases have been run to date using the solution
described in Section 4.1 and the numerical inversion technique. Figure 4.4 shows a
typical case. The results generally show an interference pattern with 6 dB/doubling of
distance decay out to distances of the order of thirty meters and a more complicated
behavior beyond that distance but with no significant change in the rate of decay. This
latter result is somewhat unexpected from qualitative arguments. Experimental data for
propagation under inversion conditions is quite limited, with the data presented by
Sutherland and Brown [16] being the major set. However, this set contains only seven
measurements at a fixed height over a 675 meter distance. No direct comparisons
have been made but the data also shows what appears to be a 6 dB/doubling of
distance decay with some interference minima. Thus at least qualitatively the
agreement appears good.

Appendix B contains a listing of the program for the Inversion case.
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5.0 CONCLUSIONS

Approximate solutions of the Hankel transformed acoustic wave equation with a
particular, realistic and well-developed vertical sound speed (or temperature) profile
have been obtained for both the lapse and inversion cases. These solution are quite
complex and exact inversion of the transformed solution does not appear possible.
Both approximate inversion using contour integration and the saddle point approach
and numerical inversion have been used to obtain the physical solution in the case of
lapse conditions. Only numerical methods have been used with inversion condition.

The lapse case shows the expected behavior: an interference pattern with a 6
dB/doubling of distance decay within the shadow region; a rapid decrease in sound
level in the vicinity of the geometric shadow boundary; and approximately a 6
dB/doubling of distance decay well within the shadow region. Similar behaviors occur
for both inversion methods but the contour integration - saddle point method yields and
larger decrease in the sound level on passing into the shadow than the numerical
integration technique. The origin of this difference has not been determined. The
contour integration - saddle point method results appears to agree with the empirical
model of Weiner and Keast [17] better then the results of the numerical inversion
technique. Since the techniques are applied to the same approximate solution of the
transformed acoustic wave equation the difference must result from the inversion
techniques. The numerical technique also produces a weak interference-like behavior
far into the shadow region. This appears to be artifact of the numerical method as is the
increase in sound level that frequently occurs as the maximum distance for the
inversion technique is approached.

Agreement between the results and experimental data is fair within the shadow
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boundary. The level is predicted well but the location of interference maxima and
minima are not accurately predicted. This may be due to the poor fit of the temperature
profile to the measured profile. No data appears to be available that both gives a
temperature profiles and sound levels in the shadow region.

The inversion case shows an interference pattern with a 6 dB/doubling of
distance decay out to distances of the order of thirty meters for realistic temperature
profiles. Beyond this distance the decay rate appears to remain nearly the same but
the structure of minima and maxima becomes irregular. This tends to agree with a
simple geometric argument since "trapped” rays start to reappear in a ray diagram at
such distances. Little data is available for comparison in the inversion case.
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7.0 LIST OF SYMBOLS

English

O0Om>»W®

mm T m

o

“00 XX &~ -

Sound speed.

Function defined by (2.4) or constant in (3.7).

Function defined by (2.5) or constant in (3.7).

Function defined by (2.6).

Constants.

Function defined by (2.7).

Function defined by (2.11).

Arbitary function

Function defined by (2.10).

Function defined by (2.25).

Function defined by (2.26).

Function defined by (2.27).

Function defined by (3.8).

Hankel transform of G.

Acoustic pressure with time dependence seperated out, see
(3.1)

Modified one-third order Hankel function of the first kind, see
(3.12).

Modified one-third order Hankel function of the second kind, see
(3.12).

-1

Intergal defined by (3.41).

Zero order Bessel Function.

Function defined by (3.25).

Constants

Acoustic pressure.

Constant determining the strength of a point acoustic source.
Horizontal distance from the source.
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G
u.
®
o
x

e,ee.edb.my@m:md"cop

Horizontal distance from the source.
Function defined by (3.26).
Function defined by (3.29).
Function defined by (4.11).

Height of the point source above the ground.
Time.

Temperature.
Height above the ground surface.
Acoustic impedance of the ground surface.

Scaie factor for iemperature, see (1.2).

Hankel transform variable replacing r, see (3.2).
Function defined by (2.17).

Delta function.

Function defined by (3.10).

Angle an acoustic ray make relative to horizontal.
Limiting ray angle, see (2.28).

a_/(oa).

Arbitrary arguement

Density of the air.

Function defined by (3.27).

Function defined by (2.12).

Function defined by (3.9).

Function defined by (3.29).

Circular frequency.
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Combinations

AT Change in Temperature between the ground surface and
far above the ground.

Subscripts other than given above

1,2 0r3.

i

(o} Evaluated at the ground, or a reference value.
tp Evaluated at a ray turning point.

s Evaluated at the source height s.

z

Derivative with respect to height (g, or g,,) or evaluated at the height z.
oo Evaluated at infinite height.
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Figure 1.1. Temperature as a function of height above the ground for different times of

the day as determined by Best [1].
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N ALPHA= 8,029
TINF=  302.0
DELT T= 9.732

Figure 1.2. The present model of temperature as a function of height and a set of

observations by Butterworth [4]).
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Figure 2.1. The nomenclature used in defining the rays.

56




ELEVATION M)

ALPHAs 175
DEL.T/T= 0.030

| i ) |
0 10 20 30 40 S0 60 70

HORZ. DIST. FROM SOURCE (M)

80

Figure 2.2. Acoustic rays for a lapse case with o = 1.75 m*1 and AT/T_ =0.03 with a

source at a height of 2 m.
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Im(B)>0 By ﬁ Imig *?
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Figure 3.1. Path followed in complex g3/2 - space as the real part of B varies from zero

to infinity and the imaginary part of B is constant for the lapse case.
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Figure 3.2. Sketch of the location of the branch line used for calculating g (z,B) =
(93/2 (z,8) )23 in the lapse case.
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Figure 3.3. Sketch of the three types of physically occuring rays in the lapse case.
Type 1 rays have their turning point below the ground surface. The turning point for
type 2 rays is below the source and above the ground surface. Type 3 waves have a
turning point above the source, this type of ray does not appear in a point source ray
diagram but occurs in the superposition making up the inverse transform.
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Figure 3.4. Sketchs of the regions in complex B-space where the various forms of the

solution are valid for the lapse case. Part a) is for points above the source, part b) is for

points below the source. The lines are branch lines for g (0,B), g (z,B) and g (s.B).

62




45.0

40.0 Results of Cheng [13]
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Wainer and Keast [17)
30.0

SPL-dB

25.0 1

S = 3 metars
20.0 Z = 1.5 meters

© = 10,000 rad/sec (1590 Hz)
a = 2.5 (meters)-1 l
15.0 1  AT/T.=0.025 !

10.0 ' K ’ ;
0 20 30 40 60 80 100

r - meters

Figure 3.5. Typical results for a lapse case using the saddle point method only, from
Cheng [13], as compared to the Weiner and Keast empirical model [17]. The solution
extends only to the shadow boundary at about 68 meters.
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Figure 3.6. Typical results for a lapse case using the combined saddle point-contour

integration method. From Ma [12).

64




-40. | s=3meters
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Results of Lioyd[15]
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T
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Figure 3.7. Typical results for a lapse case using the numerical inversion technique.

From Lioyd [15].
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Figure 3.8. Comparison of the resuits of the saddle point-contour integration method
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Figure 4.1. Path followed in complex g3/2 - space as the real part of B varies from zero

to infinity and the imaginary part of B is constant for the inversion case.
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Figure 4.2. Sketch of the location of the branch line for calculating g (z,8) =

( g3/2 (z,B) 2/3 in the inversion case.
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Figure 4.3. Sketch of the regions in complex B-space where the various forms of the

solution are valid for the inversion case. The lines are branch lines for g (z,B), g (s.B)

and g (0,B).
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Figure 4.4. Typical results for an inversion case using the numerical inversion
technique.
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APPENDIX A - The Lapse Case Program

The material below is from Lloyd [15] and both describes the program used to
calculate the transformed solution and to carry out the inversion and presents a listing
of that program. The program is named FFTPRESS and was written to be used on a
VAX 750. Descriptions are given both of the subroutines comprising the program, of
the input variables and a set of "helpful hints" are given that may be useful in running
the program. The intent of this section is not to describe in detail the operation of the

program but to allow a somewhat experienced Fortran user to run the code as it was
created.

SUBROUTINES

Iinput: Subroutine to input the necessary parameters to the main
program. The following sentences summarize each of the input variables
in the order they are requested. Tinf is the temperature at infinite height,
normally 300 K. Tinf is used to calculate the speed of sound a. Dtot is the
temperature change from infinity to the ground normalized by the
temperature at infinity. Dtot is normally 0.025. Alpha is the term used in
the temperature profile defining the altitude at which the temperature
gradient becomes effective. Alphais normally 2.5 (meters)". Spiref is
the reference sound pressure level used in the calculations of sound
pressure level in dB. Omega is the frequency of the sound source in
rad/sec. Resistance is the flow resistance used in the Chessel model and
is normally 300 cgs units. Zr is the height of the receiver in meters. Zs is

the height of the source in meters. Alp is the amplitude of the imaginary
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component in transformed space. Alp greater than zero is integration
above the real axis. The product of Alp and the step size AK should not

exceed 0.01 and may be much smaller. Alp is replace by B in the thesis. Ns
is used in an analytical function that is subtracted from the sampled

solution to null the effects of off axis integration. Ns is normally 3. If Ns

is equal to zero then no subtraction occurs. Ns is replaced by § in the
thesis. Me nonzero signals the inverse Hankel transofrm routine that the
terms representing the integral extended to infinity are to be included in

the inversion. Me is also the number of terms to be used and is normally 5.
Me is repiaced by M in the thesis. N1 is the number of points to be used.

N1 depends on the maximum horizontal distance desired. N1 equal to 4096
points is a common value. Np and N1 are used interchangeably. N1 must be
equal to an integer power of two. Delbeta or delK are the step size in
complex K space. In the program Delbeta and DelK are used
interchangeably. Delbeta also depends on the maximum haorizontal distance
desired and also on the maximum Beta allowed. This maximum Beta is very
near to omega divided by the speed of sound. Beta and K are used

interchangeably in the program and thesis.
Region: Subroutine used to determine which of 8 diffferent forms of

the general solution are to be used. The selection depends on how the

waves are interferring at that particular value of K. Region calls to
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subroutine g32all to identify if the complex part of g3/2 has changed sign.
The sign change indicates a different set of rays are combining to form the

solution. With each set of rays a different form of the solution is required.

Hall: Subroutine to calculate the Hankel functions Hy and Ho and their

derivatives in terms of the Airy functions, Al and Bl. Hall calls to Cgbair
to get the Airy functions needed.

Hall2: Subroutine to calculate only the Hankel functions.

Cgbair. Subroutine to calculate the Airy functions. Cgbair uses either

an asymptotic or a small argument approximation of Al and Bl depending on
the value ofcomplex K.

Gzalll: Subroutine to calculate the derivatives of the g3/2 function.

These values are used to compute the reflection coefficients.
Gall: Calculates the g function needed to calculate the g3/ 2 function.
Dafb2: Subroutine modified from Attenborough and Richards to

calculate the inverse Hankel transform using fast Fourier transforms.

Dafb2 calls to subroutine Zeta to calculate the terms representing the
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extension of the integral to infinity and to subroutine Fork used to perform
the actual fast Fourier transform.

Zeta: Subroutine to compute the value of the integral to infinity.

Fork: An efficient fast Fourier transform taken from Attenborough
and Richards program.

VARIABLES

the transformed solution.

Tau: The term t used in the reflection coefficients developed by Van
Moorhem.

Sci: The term y used in the reflection coefficient developed by Van
Moorhem.

Rp: The actual reflection coefficient.

R4: The modified reflection coefficient representing refraction.
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En: The complex argument of the Hankel function. En is a function of

K (or Beta) and the height of the source or receiver, whichever applies.

Rlemda: The ratio of omega to speed times alpha. The reciprocal of
the wave number.

Zimped: The complex impedance of the ground normalized by the speed
of sound and the density.

Z2 and Z3: Heights of the receiver and source, respectively.
Gbar (K) or Gbar(Beta): The sampled function to be inverted.
Gbar (r): The inverted solution. The real space answer.

G: The sound pressure level result.

Rad: The horizontal distance of the present (Gbar (r)

Rad2: The logarithm of Rad.
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HELPFUL NOTES

1. All units used here are examples only. The only requirement in
operation is to use a consistent set of units.

2. The output of sound pressure level and horizontal distance along
with an echo of input parameters is written to file FOR044.dat in the
present diretory.

3. To plot the result at the University of Utah Mechanical Engineering
Vax system type RUN PLOTPROMPT and the rest is interactive.

4. Basic instructions for use on the University of Utah Mechanical
Engineering Vax system are:

a. Log on using normal sequency of user name and password.

b. Type @Q to link all necessary files together. Instead of combining
all files into a large file several small trackable files are used for ease of
editing.

¢. Type RUN FFTPRESS to begin execution.

d. Input the variables as requested by subroutine Input.

e. At completion FFTPRESS will display FINALLY FINISHED. To plot the
results type RUN PLOTPROMPT. This is a standard plotting program that
uses the system subroutine Mgraph. The data file name is FOR044.DAT.
The data file contains 2 columns. The fist column of the data is the
logarithm of the horizontal distance. The second column of the data is the

sound pressure level. 15 lines are used at the beginning of FORC44.DAT to
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echo the input parameters, therefore tell PLOTPRMPT to begin accepting
data at line sixteen of file FOR044.DAT. The plot will display on graphics
terminals only. Mgraph asks if a hard copy is desired when crt plotting is
finished. PLOTPROMT has autoscaling capability that can be turned on or
off and offers many other self instructing options. Mgraph creates files
named HPPLOT.HPL, however, it is recommended to change the name as soon
as possible to avoid deletion of previous plots. If a hard copy plot is
desired after exiting PLOTPROMT type PLOT then the file name.

f. Log off with command LO.
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PROGRAM FFTPRESS
(ol 2 g L T N s Lt s s it st L

C MAIN ROUTINE TO DEVELOPE THE GBAR(b,Z) TO BE INVERTED *
C THE MAIN WILL INPUT THE NECESSARY CONSTANTS,CALCULATE EETA, *
C SELECT FORM OF SOLUTION CALL THE SUBROUTINES AND COMPUTE RO, TAU, *
C CI,g,THE HANKEL FUNCTIONS AND FINALLY CALCULATE GBAR(b,Z). *

R S I L I I T L L arrreeem
C SUBROUTINES:

G32ALL: FINDS THE FUNCTION g"3/2(b,z) USED T0 DETERMINE
WHICH REGION OF SPACE PRESENT BETA IS IN.
REGION: GIVEN g*3/2 DETERMINES WHICH REGION OF
: SPACE PRESENT BETA IS IN.
GZALL: FINDS gz(b,2)=dg/dZ AND THE OTHER DERIVATIVES

USED TO FIND K, TAU,SCI. ALSO RETURNS ETA(b,Z)
THAT IS.USED AS THE ARGUMENT FOR HANKEL
FUNCTIONS. GZALL CALIS TO GALL TO GET g.

GAILL: CALCULATES -g FUNCTION.

HALL: CALCULATES THE HANKEL FUNCTIONS FROM AIRY
FUNCTIONS. CALLS CGBAIR TO GET AIRY FUNCTIONS

HALL2: CALCULATES ONLY THE HANKEL FUNCTIONS NOT THE
DERIVATIVES AS HALL DOES. CALLS CGBAIR ALSO.

DAFB2: GIVEN GBAR(b,Z) USES METHOD DEVELOPED BY

RICHARDS AND ATTENBOROUGH TO PERFORM THE
HANKEL INVERSION. USES SUBROUTINES ZETA,FORK.
DAFB2 MAKES SEVERAL CORRECTIONS TO A GENERAL
FFT. THE STANDARD CODE IS TAKEN FROM RICHARDS
AND ATTENBOROUGH PROGRAM.

ZETA: FORMS THE SUM OF ME TERMS WHICH APPROXIMATES
GBAR(d,Z) TO INFINITY IN THE BETA SPACE.
FORK: A VERY FAST FFT USED TO PERFORM ACTUAL

INVERSION OF GBAR(b,Z) FROM THE BETA SPACE.

INPUTS:
TINF: THE TEMPERATURE AT VERY LARGE Z
DTOT: THE DELTA__T/T PARAMETER REPRESENTING THE
4 .. TEMPERATURE GRADIENT.
ALPHA: "PARAMETER USED IN DEFINITION OF TEMPERATURE
GRADIENT.
SPEED: SPEED OF SOUND AT T(INF).
OMEGA: FREQUENCY OF SOUND IN RADIANS/SEC.
Z: " FIXED DISTANCE TO THE OBSERVER Z2 IN PROGRAM.
S: FIXED DISTANCE TO THE SOURCE Z3 IN PROGRAM.
SPLREF: REFERENCE SOUND PRESSURE LEVEL USED TO COMPUTE
THE SOURCE STRENGH Q.
RESISTANCE: GROUND RESISTANCE IN THE CHESSELL MODEL.
ALP: THE TERM USED TO INTEGRATE OFF REAL BETA AXIS.
NS: PARAMETER IN THE ANALYTICAL FUNCTION IN DAFB2.
ME: PARAMETER TO PRODUCE SUM TO INFINITY IN DAFB2.
Ni: SIZE OF ARRAY TO BE INVERTED.

DELBETA: STEP SIZE USED FOR BETA ALSO DEIK IN DAFB2.

oRoioloRoloNoXoRoNoRoNoNoReoRoRoRoReNo oo Ro o RoRo o ko ko Xo ko ko ke koo ko koo ko Xo koo X o RO N @

NOTE: K AND BETA AND DELK AND DELBETA ARE USED INTERCHANGEABLY
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VARIABLES:
BETA: INDEPENDENT VARIABLE IN TRANSFORMED SPACE.
TAU: TAU DEFINED IN PAPER BY VAN MOORHEM.
SCI: SCI DEFINED IN PAPER BY VAN MOORHEM.
RO: RO CONSTANT DEFINED IN VAN MOORHEM.
Ri: Rl CONSTANT DEFINED IN VAN MOORHEM.
EN: HANKEL, FUNCTION ARGUMENT.
RLEMDA: OMEGA/ ( ALPHA*SPEED) .
BRO: BRANCH CUTS IN THE BETA SPACE ASSOCIATED WITH
BRZ: THE SQUARE ROOT AND 3/2 POWER FUNCTIONS
BRS: IN g AND g THREE HAYF.
BRW: BRANCH CUR AT OMEGA/SPEED.
ZIMPED: GROUND IMPEDENCE NORMALIZED BY DENSITY AND SPEED.
GZ: dg/dZ FROM GZALL1.
GZZ: d2g/dZ2 FROM GZALIA.
OTHER DERIVATIVES PER THIS NOTAPION
Z1: REFERENCE DISTANCE 0.0.
72: Z AS ABOVE.
23: S AS ABOVE.

FFEIIIFIHHFH FHFI IR AT H IR IHIFHIEH AT X H I

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

INTEGER IREGION

COMMON /INTEG/™NS,ME,N1

COMMON /AFB2IN/ ALP DELBETA

COMMON /CONSTANTY / SPEED OMEGA

COMMON /CONSTANT2/ ALPHA,DTOT

COMMON /CONSTANTB/RIEVIDA,Q

COMMON /CONSTANT4/CMPI,CK,RO,R1

COMMON /HEIGHT/ 21,%Z2,23

COMMON /CETA/Z1EN,Z2EN, Z3EN

COMMON /BRANCH/BRO, BRS, BRZ , BRW

COMPLEX*16 BETA,GZ,GZZ

COMPLEX*16 H2,H2!

COMPLEX*16 EN,Z1EN,Z2EN,Z3EN

COMPLEX*1 6 -H1 ,H1!

COMPLEX*16 CK,TAU,SCI,ZIMPED

COMPLEX*16 DUM1 DUM2 RO R1,CMPI

COMPLEX*1 6 GBAR(32768)

CALL INPUT(TINF,SPIREF,RESISTANCE)

Q=.00002%4 . %3.1415926%*4 . 67DO*(10. **(SPLREF/20.D0))

SPEED=DSQRT(1 . 4D0*287.DO*TINF)

PRINT *,'THE FOLIOWING IS AN BCHO OF THE INPUT °

PRINT *,'IN THE FOLLOWING ORDER ALP DELTA ME NP DELBETA'

PRINT *,'SPEED OMEGA ALPHA DTOT Z1 22 23 RESISTANCE'

PRINT *,'TINF,SPIREF'

PRINT %, ¢ ! SKIP A LINE

PRINT *,'THESE VALUES ARE ALSO WRITTEN TO FILE 44'

PRINT *,ALP,NS,ME,N1,DELBETA, SPEED, OMEGA,ALPHA , DTOT

PRINT * z1 72 z3 RESISTANCE TINF SPLREF

WRITE(44,*) VECHO OF INPUT ALP NS ME DELBETA SPEED OMEGA ALPHA
& DTOT Z1 22 23 RESISTANCE TINF SPLREF!
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WRITE(44,*) ALP,NS,ME,N1,DELBETA,TINF,SPLREF, OMEGA,ALPHA,
& DTOT,21,22,23,RESISTANCE, Q, SPEED
RLEMDA=OMEGA/ (SPEED*ALPHA )
PI=3.1415926
CMPI=(0.0,1.D0)
C FUNCTIONS TO COMPUTE THE COMPLEX IMPEDENCE FROM CHESSELL MODEL
FR=OMEGA/2.D0O/PI
RATIO=FR/RESISTANCE
R=1.+49.08DO*RATIO**(~.75D0)
X=-11.9DO*RATIO**(-.T3DO0)
ZIMPED=DCMPIX(R,X)
BRO=OMEGA/SPEED*DSQRT (1.DO/(1.DO % ALPHA*Z1+DTOT))
BRZ=OMEGA/SPEED*DSQRT ( (1 . DO+ALPHA*Z2) /(1 . DO+ALPHA*Z2+DTOT ) )
BRS=0MEGA/SPEED*DSQRT( (1. DO+ALPHA*Z3) /(1 . DO+ALPHA*Z3+DTOT ) )

BRW=OMEGA/SPEED

PRINT *,' ¢

PRINT #*, ' ¢ L .

PRINT *, 'THE BRANCH CUTS ARE',BRO,BRZ,ERS,ERW

WRITE(44,%*) 'THE BRANCH CUTS ARE',BRO,BRZ, BRS, BRW
Do 1,I=1,N1
BETA=DCMPLX (DFLOAT(I-1), (-ALP) )*(DELBETA)
IF (ABS(BETA) .ILE. .00000001) THEN
BETA=DCMPLX (_. 0000001DO, (~ALP) ) *DELBETA
END TF :
CALL GZALL1(Z1,BETA,GZ,GZZ,EN)
Z1EN=EN \
DUM1=GZ
DUM2=GZZ & :
CALL GZAII1(Z2,BETA,GZ,GZZ,EN)
Z2EN=EN B
CK=Q/12.D0O/CMPI /( RLEMDA**(2.DO/3.D0O) ) *1 .0/ (CDSQRT(GZ))
CALL GZALL1(Z3,BETA,GZ,GZZ,EN)
Z3EN=EN
CK=CK*1.DO/(CDSQRT(GZ))
TAU=ALPHA*RLEMDA-CMPI /2. DO*Z IMPED*DUM2 /DUM1
SCi=4TMPED*( (3./2.)**(2.D0/3.D0) ) *( (RLEMDA )**(2.D0/3.D0O) ) *DUM!
CALL HALL(Z1EN,H2,H21,H1,H11)
DUM1=TAU*H1+CMPI*SCI*H11
DUM2=TAU*H24+CMPI *#SCI *H21
RO=-DUM1./DUM2
DUM1=CMPI*PI/6.DO
R1=(CDEXP(-DUM1 )*(CMPI*RO) ) /( (CDEXP(DUM1 )**2.D0)+(RO**2.D0))
CALL REGION(BETA,IREGION)
GO0 T0(10,20,30,40,50,60,70,80), IREGION
C #¥xoekxe* REGION 1 BEGINS HERE FOR Z2>Z3 OR 2>S  #ak#xaks
10 CONTINUE
CALL HALL2(Z3EN,H2,H1)
DUM1 =H1+RO*H2
CALL HALL2(Z2EN,H2,H1)
GBAR(I )=CK*H2*DUM1
GOTO 500
C *oxeeeex®  REGION 2 BEGINS HERE FOR Z2>Z3 OR ZD>S  Hxsaasik
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20 CONTINUE
CALL HALL2(Z3®,H2,H1)
DUM1=H1+R1*H2
CALL HALL2(Z22EN,H2,H1)
GBAR(I)=CK*H2*DUM1
GOTO 500

C *otooorx REGION 3 BEGINS HERE FOR Z2>Z3 OR Z>S  #-E-ias

30 CONTINUE
CALL HALL2(Z3EN,H2,H1)
DUM1 = (H1+RO*H2 ) *R1 *CDEXP (CMPI*PI/3.D0)
CALL HALL2(Z2EN,H2,H1)
GBAR(I) =CK*H2*DUM1
GOTO 500

C #*xexo0oer REGION 4 BEX}INS HERE FOR Z2>Z3 OR Z>S #raeax

40 CONTINUE
CALL HAILZ(ZBM H2 H1) “
DUM1 =CDEXP(CMPI*PI/ 3.DO)*R1 *(H1 +RO*H2)
CALL HALL2(Z2®y,H2,H1)

GBAR (I )=CK*DUM{’ *(HE+(CDE)CP(CMPI*PI/3 DO)*H1))

GOTO 500
C *xxxxxxx  REGION 5 BEGINS HERE FOR 22<Z3 OR 2<S
50  CONTINUE
CALL HALL2(Z2EN,H2,Ht)
DUM1=H1+ROMiZ -
CALL HALL2(Z3EN,H2,H1)
GBAR(T )=CK*H2*DUM!
GOTO 500 |
C **xxooooex  REGION & BEGINS HERE FOR 22<Z3 OR 2<S
60 CONTINUE
CALL HALL2(Z2RN,H3,H1)
DUM1 =H1 +R1 *#H2
CALL HALL2(Z3EN,H2,H1)
GBAR (I )=CK*H2*DUM1
GOTO 500
C %eexeeorx  REGION 7 BEGINS HERE FOR 22<Z3 OR Z<S
70 CONTINUE ...
DUM1 =CDEXP (CMPI*PI /3.DO)*Rf
CALL HALIL2(Z2EN,H2,H1)
DUM1 =DUM1 *(H1+RO*H2)
CALL HALI2(Z3EN,H2,H1)
GBAR(T ) =CK*H2*DUM1
GOTO 500
C sxxxcceeex  REGION 8 BEGINS HERE FOR 22<Z3 OR Z<S
80 CONTINUE
DUM1 =CDEXP (CMPI*PI /3. DO)*Rf
CALL HALL2(Z2EN,H2,H1)
DUM1 =DUM1 * (H1+RO*H2)
CALL HALL2(Z3EN,H2,H1)
GBAR(I )=CK*(H1 *CDEXP(CMPI*PI /3. DO)+H2)*DUM1
GOTO 500

I

ORI %

bxad s 2 2o

C END OF GBAR(BETA) CAILCULATIONS BASED ON REGIONS DETERMINED
C MULTIPLY BY BETA ONLY TO MATCH VAN MOORHEM DEFINITION TO

81




C RICHARDS AND ATTENBOROUGH.

500  CONTINUE
GBAR(I )=GBAR(I)*BETA
1 CONTINUE

PRINT *,' LAST BETA EXCUTED IS',BETA
CALL DAFB2(GBAR)
DO 2,I=1,N1/2
RAD=2. DO*PI *DFLOAT(I-1)/(DFLOAT (N1 )*DELEETA )
IF(RAD.LE.O.O ) THEN
GOTO 5
END IF
RAD2=DLOG10(RAD)
G=20. DO*DI_OG‘IO(ABS((}BAR(I)))
WRITE(44,9093) RAD2,G
5  CONTINUE .
2  CONTINUE .
PRINT *, 'FINALLY FDIISI{ED'
9093 FORMAT(SX 3G18. 8)
STOP s
END

aaaaQ

-

SUBROUTINE INPUT(TINF,SPLREF,RESISTANCE)
e aa s kaa s s a s S S T s L S R T e
C THE PURPOSE OF THIS ROUTINE IS TO INPUT ALL NECESSARY PARAMETERS TO *
C THE MAIN ROUTINE. THE DEFINITION OF EACH PARAMETER WILL BE DEFINED *
C AT ITS RESPECTIVE INPUT. *
3R OHHEEOOHERE OO OO OO HEHEEHHHHHOHOO O

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /INTEG/ NS,ME,N?

COMMON /AFB2IN/ ALP,DELBETA

COMMON /CONSTANT1/ SPEED,OMEGA

COMMON /CONSTANT2/ ALPHA,DTOT

COMMOR /CONSTANT3/ RLEMDA,Q

COMMON /CONSTANT4/ CMPI, CK RO,R1

COMMON /HEIGHT/ 21,22 23

COMMON /CETA/ Z1EN, ZZEN Z3EN

COMMON /BRANCH/ BRO,BRS,BRZ,BRW

WRITE (6,899)

WRITE(6,900)

READ *, TINF

WRITE (6,901)

READ *, DTOT

WRITE (6,902)

READ *, ALPHA

WRITE (6,903)

READ ¥, SPLREF

WRITE (6,904)

READ *, OMEGA
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910
911

WRITE (6,905)
READ *, RESISTANCE
WRITE (6,906)
READ *, 22,23
21=0.D0

WRITE (6,899)
WRITE (6,907)

- READ *, ALP

ALP=-ALP ! NECESSARY DUE TO PREVIOUS DEFINITION USED
WRITE (6,908)
READ *, NS

READ *, ME . .

WRITE (6,910) . =~ * _

READ *, Ni

WRITE (6,911) - '

READ *, DELBETA ., . -

FORMAT('0",20X,18 ,////////////1//) ' CLEARS THE SCREEN

FORMAT('0', ///,10X,3@H THE FOLLOWING ARE PHYSICAL VARTABLES.
.;/,12x,43H INPUT THE TEMPERATURE AT Z EQUAL INFINITY.

9
FORMAT (X,12X,45H INPUT THE TEMPERATURE CHANGE DELTA T/T(INF).
FORMAT (X,12X,46H INPUT THE TEMPERATURE PROFILE CONSTANT ALPHA.
FORMAT ()’(,‘;ZX,%H INPUT THE REFERENCE SOUND PRESSURE LEVEL.
FORMAT (i,12x,3,53 INPUT THE ANGULAR FREQUENCY IN RADIANS/SEC.
FORMAT (X,12X,47H INPUT THE CHESSELL MODEL FLOW RESISTANCE (cgs)
FORMAT (X,12X,46H INPUT RECEIVER AND SOURCE HEIGHTS SEPARATED
./, 25H BY A COMMA.,/)
FORMAT (///,10X,37H THE FOLLOWING ARE NUMERIC VARIABIES.
+//,12%,39H INPUT ALP. THE IMAGINARY PART OF BETA.

. +/,12X,43H NOTE POSITIVE VALUES ARE ABOVE TE AXIS. /)
rorma} (X,'1)"2X,46H INPUT THE DELTA PARAMETER USED IN INTEGRATION
FORMAT (X,12X,46H INPUT THE NUMBER OF TERMS IN SUM T0 INFINITY.
FORMAT (X, 12X,46H INPUT THE NUMBER OF POINTS TO EE USED.

FORMAT (X, 12X,46H INPUT THE STEP SIZE IN BETA (OR K) SPACE.

RETURN
END

SUBROUTINE REGION(BETA, IREGION)

C**********************************************************************

83




C SUBROUTINE TO DETERMINE WHICH OF 8 REGIONS *
C THE EVAIUATION IS T0 TAKE PILACE IN. *

(O 3469036 -3 333 36 33363 363103006 FERHEHEEEE I 33 33 X 636 33006 K303 FH

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INTEGER DOUBLE PRECISION Ki
COMPLEX*16 BETA,G32C1,G32C2,G32C3
COMPLEX*16 G32PI,G32PI2,G32PI3
COMMON /INTEG/NS,ME,Nt

COMMON /AFBZIN/ALP DELEETA
COMMON /CONSTANT /SPEED OMEGA
COMMON /CONSTANT2/ALPHA,DTOT
COMMON /CONSTANTS/RIEMDA Q
COMMON /CONSTANT4/CMPI,CK,RO, R
COMMON /HEIGHT/ 21,22,%3 ~
COMMON /CETA/ZtEN, ZOmN , Z3EN
COMMON /BRANCH/BRO,BRS BRZ, BRW
INTEGER IREGION *

CALL G32ALL(Z1,BETA,G32C1)
CALL G32ALL(Z2 BETA,G32C2)
CALL G32ALL(Z3,BETA G3203)

-

C N THE EVENT THAT BRZ OR BRS AND BRW ARE VERY CLOSE THE FOLLOWING
c IS USED TO INSURE PROPER REGION IS CHOSEN. W1 AND W2 ARE SIMPLE
C  WEIGHT FACTORS TOQ.DETERMINE WHICH DIRECTION TO EVALUATE REGIONS.
o BY WEIGHTING THE SELECTION DEPENDING HOW CLOSE BETA IS TO BRW
o THE REGIONS ARE FOUND IN THE REVERSE ORDER.
POSMAX=MAX(Z2,23)
Wi=1.0 .
w2=1.0
DUD=OMEGA/SPEER
DUD=DUD*W1+DUD*W2*DSQRT ( (1 . O+ALPHA *POSMAX ) / (1 +ALPHA *POSMAX+DTOT) )
DUD=DUD/2
IF(Z22.1T.23) THEN
GOTO 120
END IF
C TFOR **(22> >g3 OR 2>S)* THE FOLLOWING IDENTIFY REGIONS OF SPACE
AT12DIMAG(G32C1 )

AI2=DIMAG(G32C3)
AI%=DIMAG(G32C2)
IF(REAL(BETA).GT.DUD) THEN
GOTO 110
END IF
IF(AI3.GT.0.0) THEN
IREGION=4
GOTO 150
END IF
IF(AI2.GT.0.0) THEN
IREGION=3
GOTO 150
END IF
IF(AI1.GT.0.0) THEN
IREGION=2




GOTO 150
END IF
IREGION=1
GOTO 150
110  CONTINUE
IF(AI1.17.0.0) THEN
IREGION=1
GOTO 150
END IP
IF(AI2.11.0.0) THEN
IREGION=2
GOTO 150 o
END IF *
IF(AI3.1T.0.0) THEN
IREGION=3 o
GOTO 150 :
END IF N
TREGION=4
GOTO 150 &
C FOR**(Z2<Z3 (R z<s)** THE FOLLOWING IDENTIFY REGIONS OF SPACE
120 CONTINUE
AT1=DIMAG(G32Ci)
AT2=DIMAG(G32C2)
AT3=DIMAG(G32C3) .
IF (REAL(BETA).GT.DUD) THEN
GOTO 130 -
END IF :

IF (AI3.GT.0.0) THEN
IREGION=8 -

GOTO 150

END IF

IF (AI2.GT.0.0) THEN
IREGION=7

GOTO 150

*(51 GT-:0.0) THEN
IREGION=6
GOTO 150
END IF
IREGION=5
GOTO 150
130  CONTINUE
IF (AI1.LT.0.0) THEN
IREGION=5
GOTO 150
END IF
IF (A12.LT.0.0) THEN
IREGION=6
GOTO 150
END IF
IF (AI3.1T.0.0) THEN
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IREGION=

GOTO 150
END IF
IREGION=8
GOTO 150
150  CONTINUE
RETURN
END
C
C
C
C ' | S
SUBROUTINE G32ALL(Z,BETA,G32C)
C o
C* S . *
c* G32ALL CALCULATES g3/2 FUNCTION *
C* ' R 4 . ‘ *
Cc* 'x ‘ : *

L o e e ]
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMPLEX*16 BETA, PHI,SQRT1, SQRT2,F00,G32C,MODLOG
COMPLEX*16 S1,A,B,S
COMMON /CONSTANT1 /SPEED, OMEGA
COMMON /CONSTANT2/ALPHA,DTOT
COMMON /BRANCH/BRO, BRS, BRZ , BRW
AA=1.+ALPHA*Z+DTOT -
B=1.-((SPEED*BETA/OMEGA ) *  SPEED*RETA /OMEGA ) )

S1=SQRT1 (BETA,Z) = -
S=SQRT2 (BETA) 5
PHI=S1/(S*DSQRT(AA))
IF(DTOT.EQ..0.OR.CDABS(1.-PHI).LT.1D-8) THEN
FOO=.0
ELSE
FOO=MODIOG ((1.+PHI)/(1.-PHI))
ENDIF :
G32C=BSQRT (AA )*S1-.5*DTOT*F00/S
RETURN
END
c
c .
C BEGIN OF FUNCTIONS USED ABOVE.
g I JEFE I F NI I 33363 36 336 36 I I I3 3 33636 2636 96 3 F 3636 96 FIIIHI I JIIHH A3 %
C SQRT1 AND SQRT2 ARE FUNCTIONS TO CALCULATE SQRT(BETA) GIVEN *
C DESIRED BRANCH CUTS AND DIRECTION +IMAGINARY OR -IMAGINARY. *

C 3000 3 JE0E 3K IE 363003 3 3963330363696 36 36 06363006 3636 303300363636 6969656 396

FUNCTION SQRT! (BETA,Z)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMPLEX*16 BETA,AA,SQRT1

COMMON /CONSTANT1 /SPEED, OMEGA

COMMON /CONSTANT2/ALPHA , DTOT

AA=1.-(( (SPEED/OMBGA ) *BETA ) * ( (SPEED/OMEGA ) *BETA ) )
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BB=1 . +ALPHA*Z+DTOT
BRAN1 =(OMEGA /SPEED )*DSQRT ( (1 . +ALPHA*2) /(1. +ALPHA*2+DTOT) )
IF ((DREAL(BETA) .GE. BRAN1) .AND.
1 (DIMAG(BETA) .IE. 0.0)) THEN
SQRT1 =~CDSQRT ( AA*BB-DTOT)
ELSE
SQRT1=CDSQRT (AA*BB-DTOT)
END IF
RETURN
END

¥ -

aQaaaa

FUNCTION SQRTZ(BEI‘A)
IMPLICIT DOUBLE PRECISION (A-H, o-z)
COMPLEX*16 BETA,AM,SQRT2
COMMON /BRANCH/ o BRS,ERZ, BRW
COMMON /CONSTANT1 /SPEED OMBGA
COMMON /consmmz/mm DTOT
AA= 1.-(((SrEED/um,A)*BErA)*((SPEm/omGA)*BE"A))
IF ((DREAL(BETA) .GE. BRW) .AND.
1 (DIMAG(BETA) .IZ..0)) THEN
SQRT2=—CDSQRT(AA)
ELSE -
SQRTZ:CDSQRT(AA)
END IF
RETURN
END

aQaaa

C ¥ 33 I 30303 3363036 H 360 36 36900030300 3636 300 36 333 3 30 33 36 33036 309633303636 3 I 3% 0%

C FUNCTION -MQPLOG COMPUTES THE 10OG OF BETA GIVEN DIRECTION AND *
C IOCATION OF BRANCH CUTS. *

C HHHEHEEHEHEHEHEEHEEHHHHOHHEOHEHE HEHEHEHOHEEEHHOHEHEHHOHEHEEEEOOO
FUNCTION MODLOG(QUAN)
IMPLICIT DOUBIE PRECISION (A-H,0-Z)
COMPLEX*16 QUAN,MODLOG
IF ((DREAL(QUAN) .1E. 0.0) .AND. (DIMAG(QUAN)
1 .GE. 0.0)) THEN
MODLOG=CDLOG (QUAN )+DCMPLX (0.0, -2%3.1415927)

ELSE
MODLOG=CDLOG (QUAN)
END IF
RETURN
END
C
C
C END OF FUNCTIONS USED ABOVE.
C
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c

SUBROUTINE BALL(Z,H2,H21,Ht,H11)
c%m%%mmmmu*m
C HALL USES SUBROUTINE CGBAIR TO CALCULATE 1/3 ORDER *
C HANKEL FUNCTIONS FROM AIRY FUNCTIONS. *
CM%*MWMHWW&W

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMPLEX*16 2,AI,BI,AIP,BIP,K,KS,H!,H2,H11,H21

COMPLEX*1 6 ARG,CI

CI= DCMPLX(0.DO,!.DO)

PI= 3.141592654D0

ARG= DCMPIX(0.D0,-PI1/6.DO)

K= (12.D0)**(4 D0/6 DO')*CDE)CP(ARG)

KS= DCONJG(K) '

CALL CGBAIR(-Z,AI,BI,AIP,BIP)

Hi= K*(AI—CI*BI) ' e

Ho= KS*(AI+CI*BI), ¢+ - .

H11= -K*(AIP-CI*BIP)

H21= -KS*(AIP+CI*BIP)"

RETURN

D

-

SUBROUTINE CGBAIR(Z,AI,BI,AIP,BIP)

CALCULATE AIRY FUNCTIONS FOR COMPLEX*16 ARGUMENT
REF. HANDBOOK OF MATHEVIATICAL FUNCTIONS, ABRAMOWITZ AND STEGUN.
ENTRY:
CAICULATE ARGUMB\IT(Z) AND ABSOLUTE VALUE(Z)
IF /Z/ IT 6
THEN USE EQS. 10.4.2 THRU 10.4.5 FOR AI,BI,AIP,BIP
10 EISE IF ARG(Z) LT PI/3
THEN CAICULATE ZETA(Z)
USE BQS¢ 10.4.59, 10.4.61, 10.4.63, 10.4.66 FOR AI,BI,AIP, BIP*
20 ELSE CAICULATE ZETA(-Z)
USE EQS. 10.4.60, 10.4.62, 10.4.64, 10.4.67 FOR AI,BI, AIPBIP*

Kk ok ok ok sk ok k ok

ENDIF
ENDIF _ *
EXIT *
END *

oNeoNoRsNoNoNoNoNoNoRNoNORoNoRoNo N o aQaaoaQ

I s izaxsaasas sz g s sl S S E S S B S S R s e S e s g

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMPLEX*16 Z,AI,BI,AIP,BIP,ZETA,CZETA,Z14,SUMt,SUM2,SUM3, SUM4,
1 ZETAP,FACT1,FACTZ,SN,CS, FTERM, FPTERM, GTERM, GPTERM, F, FP,G,GP,Z3

COMPLEX*16 VZETA,VZETAP

DIMENSION C(21),D(21)

DATA C1,C2,PIRT, PI4/ . 355028053900, . 2588194038D0, 1.T772453851D0,
+ .7853981635D0/

DATA C/1.DO, .069444444444444D0,
+ .03713348765432110, .0379930591 27800D0,
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1 .057649190412669D0, . 11609906402551DO,
+ .2915913992307400, . 8T766696950998D0,
2 3.0794530301 73100, 12.341573332345D0,
+ 55.62278536591400, 278. 46508077759D0,
3 1533. 16943201 27D0, 9207 . 2065997258D0,
+ 59892.513565875D0, 419524. 8’7511653D0,
4 3148257.4178666D0,25198919.871601D0,
+ 214288036.96366D0, 1929375549. 1823D0,
5 18335766937. %9Do/

DATA D/1.DO,
+ - 097222222222221D0 .043885030864197D0, —. 042462830783834D0,
1 -.062662163492031D0, -. 124105896027, -.30825376490107D0,

2 -.92047999241291D0, -3 421 04935846485D0 -12 807293080735D0,

3 —57.508303513911D0, ~287. 0332371 0920D0 -1576.3573033370D0,
4 -9446.3548230953D0, -613%5. T06663847D0, 428952 . 40040004 D0,
5 =3214536.5214006D0, -25697908. 383909D0, —218293420.83214D0,
6 -1963523788. 99091)0,,-186439310% 1051)0/

ABSZ=ABS(Z)

IF(ABSZ.EQ.0) GO 10 3.

IF(ABS(DIMAG(Z)).1E.1.D-12.AND. DREAL(Z) Ir.0.D0) GO T0 5

ARGZ=ATAN2(DIMAG(Z),DREAL(Z))

GO T0 4

ARGZ=0.D0 -,

GO T0 4

ARGZ=3.141 5926535898D0

CONTINUE -

m(ABszemsDo)Go'row

ASCENDING SERIES .

BQS. 10.4.2,10.2. 5

CONTINUE 2
23=2%%3

FTERM=1.DO

FPTERM=Z*Z/2.DO

GTERM=2

GPTERM=1.DO .

GLIM=1,,D-13*ABSZ

P=FTERN
FP=FPTERM
G=GTERM
GP=GPTERM

KKKT=100 ~ ! ADJUST KKKT TO INSURE CONVERGENCE IF NECESSARY
DO 1 I=1,KKKT
13=3%]
FTERM=FTERM*Z3/( (13~1.D0)*I3)
FPTERM=FPTERM*Z3/(I3%*(13+2.D0))
GTERM=GTERM*23/(13%(I3+1.D0))
GPTERM=GPTERM*Z3/((13-2.D0)*I3)
F=F+FTERM
FP=FP+FPTERM
G=G+GTERM
GP=GP+GPTERM
IF(ABS(GTERM).LE.GLIM) GO TO 2
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aQaQa

1

10

"

CONTINUE
PRINT 6000, Z

FORMAT(/' 2='2E14.5,' ERROR IN CGBAIR, NONCONVERGENCE')
AI=C1*F-C2%G

AIP=C1*FP-C2*GP

BI=1.732050808D0%(C1 *F4C2%G )
BIP=1.T32050808D0%*(C1 *FP+C2*GP)

GO TO 9999

ASYMPTOTIC EXPANSIONS FOR /Z/ LARGE
SIGN=1.DO

SUM1=0.DO

SUM2=0.D0 S
SUM3=0.D0 — N
SUM4=0.D0O _— i
PIBY3=3.141 5926D0/3 DO -
IF(ABS(ARGZ).GE:PIBY3) GO TO 20

/ARG(Z)/ 1E P1/3 .,

EQS. 10.4.59, 10. 4 61, 10.4.63, 10.4.66

ZETA=CZETA(ABSZ, ARGZ)

Do 11 I=1,12

K=I-1

ZETAP=ZETA**K -

SUM1 =SUM1+SIGN*C(I) /ZETAP
SUM2=SUM2+SIGN*D(I) /ZETAP
SUM3=SUM3+C (1) /ZETAP -
SUM4=SUM4+D(I ) /ZETAP

SIGN=-SIGN .

Z14=ABSZ**, 25DO*DCMPLX(COS(ARGZ/4 DO), SIN(ARGZ/4.D0))
FACT1=.SDO*EXP(=ZETA )/ (PIRT*Z14)
FACT2=.5DO*EXP (-ZETA )*Z14 /PIRT
AT=FACT1 *SUM1

AIP=-FACT2*SUM2
FACT1=EXP(ZETA)/(PIRT*Z14)
FACT2=EXP (ZETA )*Z14 /PIRT

BI=FACT1 *SUM3 -

BIP=FACT2*SUM4

GO TO 9999

/ARG(Z)/ GT PI/3 NOTE CHANGE ABOVE
EQS. 10.4.60, 10.4.62, 10.4.64, 10.4.67

CONTINUE
ARGZ=ATAN2(-DIMAG(Z),-DREAL(Z))
ZETA=CZETA (ABSZ,ARGZ )
VZETA=1.DO/ZETA
111=10
DO 21 I=%,LiL
K2=(I-1)%2
J=K2+
VZETAP=VZETA**K2
SUMt =SUM1 +SIGN*C(J ) *VZETAP
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SUM2=SUM2+(SIGN*C(J+1 ) *VZETAP*VZETA )
SUM3=SUM3+(SIGN*D(J ) *VZETAP)
SUM4=SUM4+(SIGN*D(J+1 ) *VZETAP*VZETA)
21 SIGN=-SIGN

Z14=ABSZ**, 25D0*DCMPLX (COS (ARGZ/4.DO) , SIN(ARGZ/4.D0))
PACT1=1.DO/(PIRT*Z14)
FACT2=214/PIRT
SN=SIN(ZETA+PI4)
CS=COS(ZETA+PI4)
AI=FACT1 *( SN*SUM1 —CS*SUM2)
AIP=~FACT2%( CS*SUM3+SN*SUM4 )
BI=FACT1 *(CS*SUM! +SN*SUM2) S !
BIP—FACTZ*(SN*SUWSW4)

9999 REI'URN

-

R
BEGIN OF FUNCTIONS USER ABOVE

Qoo

FUNCTION CZETA(ABSZ,ARGZ)

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
COMPLEX*16 CZETA g
ARG=ARGZ*1.5D0 ~ !

CZ%(ABSZ*‘H 5DO)*DCMPLX(CO§(ARG) SIN(ARG) )*.66666666666667D0
RET

s
-

c

c _

C END OF FUNCTIONS USED ABOVE.
c

c

SUBROUTINE GZAILL1(Z,BETA,GZ,GZZ,EN)
C PP IHHHIIN X HHIH I I FHHFHFEIIIIEINIAHTEIIHTEI I HHHH ¢
C GZALL1 CALCULATES ALL THE PARTIAL DERIVATIVES *
C OF THE g ¥UNCTIGN. *
C I FHITEIE I I JIFH NI HIIEIE 3 33 HIAFIIEINH FKK H36 303 ¥

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMPLEX *16 BETA,GZ,G2Z,G,GB,GEB,SQRT1,EN

COMMON /CONSTANT‘I /SPEED OMEGA

COMMON /CONSTANT2/ALPHA, DTOT

CALL GALL(Z,BETA,G)

A=1 . +ALPHA*Z+D10T

=OMEGA/SPEED*SQRT ( (A-DTOT ) /A)
IF (DREAL(G).LE..O.AND.DIMAG(G).GE.O.) THEN
SI=-1.
ELSE
Si=1.

ENDIF

GZ=SI*2.*ALPHA*SQRT1 (BETA,Z)/(3.*CDSQRT(G*A))

C=2.*ALPHA**3.DO*DTOT/(9*A**2.D0O)

GZZ=C/(GZ*G)-.5*GZ**2.D0/G
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T=(3.*OMEGA/ (2. *ALPHA*SPEED ) ) ¥*(2.D0/3.D0O)
EN=T*G

RETURN

END

SUBROUTINE GALL(Z,BETA,G)

I X IEEEEHHHEEEEEHOOEHHEHEHEEHEEHOEHE

GALL EVALUATES THE g FUNCTION *

IMPLICIT DOUBLE PRECISION (A—H O—E)

COMPLEX *16 G,BETA,G32

COMMON /CONSTANT1/SPEED OMEGA -
COMMON /CONSTANT2/ALPHA,DTOT
CALL G32ALL(Z,BETA G32).
G=CDEXP(2. /3.*cmpe(c32))

aQaaQ vXoXoNe]

t

RETURN
END

C
c
C _ ,
C / -

SUBROUTINE HALL2(Z,H2,H1)
C FEFFEE I I IIIOIHIENH T I IITIHNHIIININ*
C HALL2 USES SUBROUTINE CGBAIR TO CALCULATE 1/3 ORDER *
C HANKEL FUNCTIONS FROM AIRY FUNCTIONS. NOT THE *
C  DERIVATIVES AS HALL DOES. *

C*************************************************************

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMPLEX*16 Z,AI,BI,AIP,BIP,K,KS,H! H2,Hi1,H21
COMPLEX*16 ARG,CI
COMPLEX*16 BETA
CI= DCMPLX(0.DQ,1.D0)
1>1_ 3. 0&1 592654D0
PLX(0.DO,-P1/6.D0)
K- (12 DO)**(1.D0/6:DO)*CDEXP(ARG)
KS= DCONJG(K)
CALL CGBAIR(-Z,AI,BI,AIP,BIP)
Hi= K*(AI-CI*BI)
Ho= KS*(AI+CI*BI)
RETURN
END

aQaaan

SUBROUTINE DAFB2(F)

C 66103300036 363 33603036 306363606 J00E36 36 36363036 0603 336063 3303600 06 936 3096 3 33 HH 30 IHHEE 0

C SUBROUTINE TO ACCURATELY DO THE HANKEL TRANSFORM OF THE SOUND *
C PRESSURE IEVEL. *
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C F(NP)=GBAR(NP) MUST BE SAMPLED AT NP POINTS WITH K=(N-1,ALP) *
C  ALP REPRESENTS THE DISTANCE ABOVE THE REAL AXIS THE FUNCTION WILL *
C  BE INTEGRATED.

C NS IS A PARAMETER REPRESENTING ADDITION OF AN ANALYTICAL FUNCTION *
C T0 F(NP) *
C

C

M IS THE NUMBER OF TERMS USED TO APPROXIMATE F(NP) T0 INFINITY  *
AT IS F I -
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /INTEG/NS,ME,N1
COMMON/AFB2IN/ALP, DELBETA
cowu’m:x1 *16 F(N1),CF,CARG, SUM, FNP, CMPI, D1
NP=N v
CMPI=DCMPLX(0. D), 1 .DO)
DEIX=DELBETA |
PI=3.1415926D0, O
C SUBTRACT THE ANALYTICAL FUNCTION IF.NS > ZERO
C  ADJUSTING THE SUBTRAGTION MULTIPLIER CF
IF(NS.IE.Q) GOTO,11
CF=DCMPLX (0.D0,0.D0) *
TF (ALP.FQ.0.0) THEN
CF=DFLOAT (NP) /DFLOAT(NS )
CF=CF*F(2)
END. IF ,
IF (ALP.NE.O.0) THEN
CF=CMPI *DFLOAT (NP)*F(1)/(DFLOAT (NS ) *ALP)
END IF
C  SUBTRACT THE ANALYTICAL FUNCTION IF NS>0
D0 10,I=1,NP & -
D1 =DCMPLX (DFIOAT(I-1 ), (~ALP))
CARG=DFLOAT (NS)*(~D1 ) /DFLOAT (NP)
F(I)=F(I)-CF*(1.DO-CDEXP(CARG))

10 CONTINUE

1" CONTINUE
IF(ALP.XQ.0. O) F(1)=DCMPLX(0.D0O,0.D0)
FNP=F(NP) ‘
DO 12¢I=2,NP

D1—DCI~1PLX(DFIDAT(I—1) (-ALP))
P(I)=F(I)/(CDSQRT(D1))
12 CONTINUE

IF(ALP.NE.0.0) F(1)=F(1)/CDSQRT((~CMPI )*(ALP))

C ADD TERMS TO INFINITY IF ME>O
IF(ME.IT.1) GOTO 20
DO 15,1I=1,NP
D1 =DCMPLX (DFIOAT(I-1), (~-ALP))
CF=D1/DFLOAT (NP)
CALL ZETA(NP,ME,CF,SUM)
F(I)=F(1 )+FNP*SUM

15 CONTINUE
20 CONTINUE
C DO THE FFT

CALL FORK(NP,F,1)
C ADD ALTERNATE TERMS T0 GIVE NP/2 SAMPLES TRANSFORMED
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A FAST FFT GIVEN BY J.F.. CLAERBOUT
DATA PROCESSING"

CF=DELK*DFLOAT (NP)*(CDSQRT(~CMPI))/(2.DO*PI )

DO 25,1=2,NP/2
A=DEXP (DFIOAT(I~1)*(ALP)*2.DO*PI /DFLOAT(NP))
F(I)=A*F(1)+CMPI*F(NP-I+2)/A
F(I)=F(1)*CF/DSQRT (DFLOAT(I~1))

CONTINUE -

RETURN

END

EY
L3

. &+
SUBROUTINE FORK(LX,CX,SIGNI) .

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMPLEX*16 CX(IX),CARG,CW,CTEMP,CI,DUM!,CMPI
INTEGER SIGNI

J=1
CMPI=DCMPLX(0.D0, 1.D0)
PI=3.1415926 . .

SC=DSQRT( 1 .DO/DFLOAT(IX) )

DO 30,I=1,IX -
IF(I.GT.J) GOTO 10
CTEMP=CX (J ) *sC
CX(J)=CX(1)*sC
CX(I)=CTEMP -

M=LX/2
IF(J.IE.M) GOTO 30

J=J-M
M=M/2
IF(M.GE.1) GOTO 20

. o J=IH
1;1 < e
ISTEP=2%L

DO 50,M=1,L
CARG=CMPI *PI *DBLE(SIGNI ) *DBLE( (M~1) ) /DBLE(L)
CW=CDEXP(CARG)

DO 50,I=M,1X,ISTEP
CTEMP=CW*CX (I+L)
CX(I+L)=CX(I)-CTEMP

CX(I1)=CX(I)+CTEMP
1=ISTEP

IF(L.IP.IX) GOTO 40

RETURN

END
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SUBROUTINE ZETA(NP,M,A,SUM)

133003 IR J IR IR JEIO I 35 00 &

SUEROUTINE TO ADD THE NECESSARY TERMS TO
EXPRESS INVERTIBLE FUNCTION TO INFINITY.
WILL USE DOUBLE PRECISION.

SUM=SUM OF 1/(NP*.5)*1 /((J+A)".5) FOR J=1 TO
INFINITY MINUS SOME CONSTANT WHICH IS
INDEPENDENT OF A.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMPLEX*16 A,SUM,D2

D2-DCMPLX(DFIDAT(M) 0.D0) -

SUM=1.DO/(M+A) .

SUM=2. DO*(DSQRTQDFIDAT(M) )-1 DO/CDSQRP(SUM))
—0.5*CDSQRT(SUM)*(1. O+SUM*(1 .0/12.0-SUM*SUM/192.0))
Do 10,J=1,M .
SUM.-SUM+1 DO/CDSQI;T(J+A)
CONTINUE

SUM=SUM/DSQRT (DFIOAT (NP ) )

RETURN

END

t
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PPENDIX B - The Inversion Case Program
The code for the lapse case follows. This code is extremely similar to the lapse

case and the subroutine names and functions, variable names and hints are identical
or at least very similar to those in the lapse case.
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OC OO0 OOOOOO0O0OMMmO

[a N aNal [a N o al [aN gl [a N a)

(g N el e

T CALL PRINTACLUDEUBETA,NDPTS) 7 °

ORIGINAL PA7E 7
OF POOR QALY
PROGRAM MAIN

itiii*'ii.tttitiﬁﬁiﬁtt*itt*iiiiiit!ttﬁiiiiiﬁﬂtitfﬁitﬁi.ttitfttiit
' e e T e 'y
* Main program: will call the subrcutines to: .
] 1) 1Input the progras parameters. L]
] 2) Finae the points in the ¢*372 function shere T *
* region changes cccure. °
b 3) 3uild the matrix of values obtained by sarching L]
L] slightly above the real axis. *
° 4) Perform the Hankel Transform on the matrix L]
L] obtzined in steg three. *
* 5) Print the results. *
- *
= *

(222 R RS RS SRS R RSS20 222222222 2 d

IMPLICIT CCQUBLE FRECISION (A-H,0-2) T
CCMMCN /MATIN/ F

COMMCN /CONST/ cl,P1l

CCMMCN /CONSTT/ SPESC,COMEGA

COMMCN /CONSTZ2/ ALPHA,DTCT

COMMCN /(CONST3/ 1,IREF,S

COMMCN /RESICN/ RKST1,RS2,RIT,R22,R01,R0O2
COMMON /5TATE/ RCE,LRESISTANCE

COMMCN /:NT&G/ N3, ME,NOPTS

chNﬂN FS;.N/ *GFTI»ELEEIA

-uHPL:X'16 FL{327¢8),CI,GLESS,RO0T,G32
CI = ZCMPLX(J.LCr1.20)

FI = SATANC(J.C0,-1.3C)

FRINT *,°21= °‘,P1

CALL INPUT(OEL3ETA,HGHNT,RTT1,RT2)
ANG = =PI1/2.00

PRINT #,°JETERMINING REGION CHANGE COORDINATES®
CALL REGION_FIND(ANG,RTT,RTZ)

PRINT *,°BUILJOING MATRIX®
CALL SUILDMRTRIX (DgLBETA;HGHT}

" PRINT »,”DCING HANKEL TRANSFORM”
CALL HANKEL

print *,°Printing results to FORCAS. OAT‘

PRINT #,°%x COMPLETE a»*"
STQP .
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CONCOOOOO0Oa0

80C

END

SUBRCUTINE INPUT(DEL

ORIGINAL PAGE 18
OF POOR QUALITY

- TN e

ETA,HGHT,RT1,RT2) -

iﬁt't!i*'ﬁi*tiiiﬁittiﬁ'ii*iiﬁtiﬁiﬁ’ti*iﬁiﬁiiﬁiti‘ﬁiﬁifitlﬁi -

*
*
4
x
*
»

xhkh R

IMPLIC
COMMCN
JOMMON
COMMCN
LUMMCN
CCMMIN
COMMON
CoMPLE

wrRITE
FRINT
FRINT
READ *
PRINT
print
REAQ *

FRINT
REAC *
TST =C
IFC(DAR3
NJOPT
PRIN
P7IN
GOTO
END IF
PRINT
3 Height’
READ #
IREF
SPEEDC
RTY
RTE
CEL3:cT
WRITE
FORMATY
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

THIS IS THE INPUT SECTION OF THE PROGRAN *
ALL PARANETERS NECESSARY FOR THE OPERATION *
OF ThE PRCGRAM WILL BE INPUT IN THIS ROUTINE *
]
*

tiittttt-t.ﬁt*itti!tttititi'Qiitt'tiﬁ'it*ﬁi!.tﬁiﬁt

IT OOUBLE FRECISION (A-M,0-1)
JCON3T/ CI.PI

JLONSTY/ SPEEC,OMEGA
/CQNST2/ ALPHA,LTCT

/CONSTS/ 1,ZREF,S

/STATE/ RCE,RESISTANCE

FINTEGH NS, MELNDPTS
X=16 CI i
(6,8GC)
%, INOLT P-YSICAL PARAMETERS: Cetector height,Source height,”’
%, znd Angular Frequency’

s225,C0¥30A i
*, “INPLT STATE PARAMETERS:Temp gracient,Temperature profile”
*," constant and Temp. at intfinity”

sOTOT,ALPHALTINF

*,°InpLt the chessell rodel FLCW RESISTANCE®
SJRESISTANCE

*,°Input tra NUMBER OF DATA PCINTS®

SNCPTS

LOGCDOFLOAT(NCPTS)) /CLOG(2.C0)
SCTST-CNINT(TST)) .GT. 1.0-8) THEN
S=ONINT(2.CO#*CNINT(TST))

T *,°Inva¥id input (must te 2 power of 23 TRY AGAIN®
1 *,7 Cax. *sNCPTS,*)
1 .
%, “INPUT HANKEL TRANSFCRM PARAMETERS: NS, ME and Integration
+NS/ME,HGHT
= 0.C0
OSCRT(401.8C0 * TINF)
OMEGA/SPEEC -

RT1%DSCRT(1.00/C1.CC+0T0T))
A RTZ2 * 1.0100 /NCPTS

(6,800) - T Co ’
('0':2CX:1E:IIIIIIIIIIIIIfIIIIlIIfIII} t clears the scraen
4,°Retecance hoht =, IREE S :

*,"Detector heights™oT
*,°Source reight =°,§
*,’Frecuency (rad)=",0mEGK "~~~ "
%,°speed of soURE s",SPEER.
*,°Temg Gradient =*,DT0¥

[T I (I 1)

e et s 2 b ]
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OO0 60 000 0000

ORIGINAL PAGE IS
OF POOR NUIALITY

PRINT *,°Profile (alpna)=’,aLpPHA

PRINT *,°T infinity 2%, Tint

FRINT »,°Chessol resist.=°,RESISTANCE
PRINT *,°Num. points =°,NCPTS

PRINT +,°Del Bet: =%, DELBETA )
PRINT ¢, ccmcccccna ‘

PRINT #,° Harkel’

PRINT *,°constants NS  =°,NS§

PRINT *,° ME =°,ME

crint *,’ Alp =7,HGHT

FRINT »,’integration hFght=*, HGHT*DELOETA
FR:NT 'I'-‘

RETURN

IND

SUSRCUTING BLILGMATRIX(DELRETA,ALP)

AR R AR A AR RARRN XX AR AN RARRIRRRAAAERERRANRRRARAINA RSN A AR R AN AR RN D

x *
* This subrcutine is used to determine the function *
* "G" 1n ¥an Mocrnem®’s notes. It will te called by *
» the Tain prs¢ram and «ill return the matrix which *
* will ce inverted ty the F¥ankel program, *
= ]
= *

222X 222 S22 RS R R RRRR SRR 2222222222 22X22 2R REZE2RREEXSRRREZS 22

IMPLICIT 2CU3LE *
CIMMON IMAIN/ G
CL4MCN /CONST/S €
CLH4MCN /CONST1/ SFE2C,O0MEGA

CIMMCN /CINSTZ/ BLPHA,DTCY

COMMCN /CONST3/ 1,1REFLS

CIMMCN /RESICN/ RS1,RS2,RI1,R12,R01,R02

COMMCN /3TATE/ ROE,RESISTANCE

COMMCN /INTEG/ AS,ME,NOPTS

CoMPLEX*T1o 5RAR(IZ7T4E),3ETA

COMPLEX*18 GI_Z1,82_5,61_C,311_0,62Z,61 -
CCMPLEX=16 ETA_2,STA_S5,ETA_0

COMPLEX*16 M1_NZ,n2_NZ,H1_NS,H2_NS

CCMPLEX%16 HA1_ND, AZ_NC, HT11_NO, H21_NO

COMPLEX*16 CCNST,R,E,CI,T1,T2,73

COMPLEX*16 TAULPSI,ZIMP

COMPLEX*16 SRG2Z,SRGIS,SRGZ,SRGS

INTEGER IREGION

3 = CDEXP(- PI » CI / 3.00)
FR = QMEGA/(Z.00%PI) -
RATIO = FR/RESISTANCE
co = 1.00+9.C80C*RATIO**(-,7500)
X = =11.9DC*RATIO**(~,7300)
LIMP = DCMPLX(3D,X)
Q = 1.C0
qQ = 0.C000c24,00+PI#4,.6700%(10.00¢%(SPLREF/20.00))
RLMDA = OMEGA/(SPEED*ALPHA)
RLMDAZI = RLMCA == (2.00/3.00)
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rn
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Py

ORIGINAL PAGE IS
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ARRA AR AR RN RARI AR RN RO A SRR R AR
L PROGRAM BEGINS NERE *»
AARRR AR R AR RN AR R AR A R d
£0 18,I=1,NCPTS

3ETA = DCMPLX (DFLCAT(I-1),(ALP))*(DELBETA)
CALL GZALLI(IREF,3ETA,GL1_C,6I1Z_0,ETA_OQ)

CALL GZALL1(Z,3:5TAa,62_2,GZL1,ETA_D)

CALL GZALL1(S,BETA,GI_S,G2Z,ETA_S)

CALL HALL(ETA_C,F2_NC,H21_NC,H1_NG,H11_NC,IREGO)
CALL nALL2CETA_S,n2_NS,h1_NS,IRZGS)

CALL hALL2CETA_Z1,H2_NI1,R1_NI,IREGZ)

CALL RESION (EZTA,IREGIGN)

TAUL = 1.5C = (SPEEZS/CMEGA » C1/2 » LIMP #» G2Z_0/6Z_0)
35T = ZIMPaCISPEIL/CYEGA
ZsI = PSI * ((3.0C0/2.C2 * RLVMOA)»**(2,00/3.00)) » GZ_C
SR3Z = CPSGRT(SZI_I)
$333 = COSGRT(GI.S)
CONST = 2 » ZET8 / (12«CI+(RLMCA23)*SRGZ*SRGS)
15 ((385(HZ_NU)) «E2. C.00 .ANC. (ABSCH21_NO) .EQ. 0.00)) THEN
:=acanx(1 035,G.C2)
5070 22
NS IF
z = TAU = HZ_NC + PSI * K21_NO
2 = =(Tau * ~1_NC + 2SI + K11_ND) / R

SC T2(1,2,346s3+,647+8),IREGICN

REZION 1 o
G3ARCI) = CCONST = (WT_NS #+ H2_NS*R) * H2_N2
33T3 10
® REGICN 2 o
GBAR(CI) = CCNST o (h1_NZ + H2_NI#*R) * H2_NS
GSTO 10

b REGICN 2«
G3AR(I) =~(CONST /(E#*E)) *» (HI_NS/R & H2_NS) * H2_N1
GGTo 10

e REGION 4 e
G3ARCI) =-CCNST,% (H1_NS/R ¢+ H2_NS) ® H1_N2
Goto 10 -

" REGICN 5 »
GSARCI) =-CCNST e (M1_NZ/R + HZ_NI) * HI_NS
G370 10 ’

LA REGION 6 »»
GBARCI)Y = CONST e (H1_NS + ((R-E)/RJ#E @ H2_NS) e H2_NI
G0To 10 '

= " REGION 7 = —° =~ B oo
GBARCI) = CONST » (W1_NZ ¢ ((R=EI/RI®E * H2_NI) * H2_NS
6070 10

» REGION 8 . -

SRLL
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8 GBARCI) = CCNST # £ = (R1_NI/R + H2_N1) * H2_NS

10 CONTINUE
RETURN T
END

SUBRCUTINE G32ALL(Z,BETA,632C)
532aLL CALCULATES ¢3/2 FUNCTION

mcaified so tre branch noint of tre LCG function
is below tha positive real axis. Feb 20, 86
modifiad agsin 10/1¢/34 for mocified prograas

IMPLICIT OCJBLE FRECISION (A=H,C-2)

COMPLEX%16 Z3ETALFMI,SIRT1,SQRT2,F00,632C,M0DLOG
CIMFLEX*T16 51,4,2,8,C1

CCMMCN /CONST/  Ci.FI

COMMCN /CON3T1/ SPEZEC,CMEGA

COMMCN /CONSTZ/ 8LFHALDTCT

AA = 1,20 + ALPRA*Z + STCT

3 2 1420 = ((SFZEOQAESTA/CMEGA) » (SPEEC*BETA/OMEGA))

31 = SQRTI(2:TA,2)

S = SSRTZ(EETA)

FRl = ST /(S*2SJET(aa))

IFCOTCT .2Q. o0 CR. CDABS(1.-°HI) LT, 1.0-8) THEN
=30= G.0

2SS
FOO= .5 » COLCGC (T.4PHIY/(1.-PHI) )

INDIF

G32C = = OSQRT(AA) +« ST + CTOT e FQO/S

RETURN ’ B

END

BEGIN CF fUNCTIONS USEC ABCVE.

L2 2RSSR RERRRZE222RRRRRRRRRR22 222022222 2222222232 X222 S0 2 2 )

SGRT1 AND SQRT2 ARE FUNCTICNS TC CALCULATE SQRT(BETA) GIVEN
CESIRED BRANCH CUTS AND JOIRECTION +IMAGINARY CR -IMAGINARY.

»
*

IS RRAZER 2RSSR RS RRRRRRRRERRRRRRSR 222222 R22R222222 2222 22 2}

FUNCTION SQRT1(BETA,IL)

IMPLICIT COUBLE PRECISICN (A-H,0-ZI)°
CCMPLEX*16¢ BJETA,AA,SQRT1,CI

CCMMON /CCNST/Z CI,P1

CCMMON /CCNSTT/SPEED,CMEGA

COMMON /CONST2/ALFHA,CTCT

AA z 1.’(((SPEECIOHEGA)iBET{)'S(S?EEPIOFEG&)'BETA))

88 32 1, * ALPHA*Z + DTOT
SCGRT12CDSCRT (AA*EB~-DTOT)

KETURN
END

<
W B ae
A R I T
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FUNCTION SQRT2(BETA)

IMPLICIT DOUBLE PRECISION (A-N,0-2) o
CCMPLEX*16 SETA,AB,SQRTZ2,CI

COMMCN /CONST/Z (CI,P1 )

CCMMCN /CONST1/ SPEEC,OMEGA ) Tt
CIMMCN /CONST2/ ALPHA,DTCT

AA 2 V.= (((SPEEC/CMEGA)*BETA)*((SPEED/OMEGA)*BETA))
SQRT2 = COSGRTI(AR)
«ETURN

eND

SUBRCUTINE GaLL(Z,2ETA,G)
LA AR RS RS S RS RSREE R R R R R R R R RS R R R R RSS2 R 2
SALL cvALLATES THE ¢ FUNCTICN ' *
AR AR EER L AR R R R R R Y Y P X Y 22222 2 )
IMPLICIT JCQUBLE FRECISICN (A-h,0-2)
CCMPLEX *»15 C,3ETA,622,82,.C1,¢7 -
COMMCN /JCCNSTZ  CI,P1
COMMCN /CCN3ST1/ SPEEC,OMEGA
COMMCN /CONST2/ BSLFHA,DTOT s -
CALL G32aLL(I,8E14,522)
FHI = OATANZ(CIMAG(G32),DREAL(G22))
it (ehi ogt. 2.dC) phi=phi=24p{
S 2 ((cdabs(322))*%(2.40/73,.,d0)) = cdoxp((phiiz d0/3.dC)%ci)
g1 =
iF =P1/2.9CY THEN

3
(PHI -
5 = COEXP(Z.CC/3.00+PICI)

L3E

= 5 » COEXP(&.0C/3.00+PI*CT)
INC IF

RETURN

END e . . —

m

Gy Ly Gy

SUBRCUTINE GZALL1(2,BETA,GZ,GIZ,ENY ™ T
AR AR AN A RANR AN E R AR S AR AN AR ISR AR AR AR RN NN AR AR AAR AN SN A NA
GZALLY CALCULATES alLL THE PARTIAL DERIVATIVES *
CF THE g FUNCTION, - SR
L P Y Y P e R I
IMPLICIT COUBLE FRECISION(A=-K,0-1)
COMPLEX #16 8cTA,62,622,6,68,688,SQRTTLEN,CI,OUM B
COMMON /CONST/ C1,PI
COMMCN /CONST1/SFEED,CMEGA
COMMON /CONSTZ2/ALPHA,CTOT T
CALL GALL(ZI,RETA.G)

SI = 1.D0

A T i .eALPHARTISOTOY T T 0 T T e T
Gl = 2.D0 % SI» ALPHA # SQRTI(BETA,Z) 7 ¢3.*COSQRT(G*A))
¢ 3 2.%ALFHA=+3,DC40TOT/(9#42+2,00)

GIZ s C/(GIeGY=.5#GL##2,00/7¢ T o m T s e e
T 2 (3,20MEGA/(2.4ALPHAXSPEE]N))an(2, acn.na)
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SN = T#§ ORIGINAL PAGE IS

RETURN OF POOR QUALITY
END

SUSROUTINE HALL(Z,H2,F21,H1,H11,1REG)

c.tttﬁiﬂtt!ktttiitit"ﬁ'tii.iitt*tiiti.*ﬁiti.iiiﬁiﬁt"ﬁt.'...iﬁﬁ".ﬁii

C
C

nALL USE3 SU3BROUTINE CG3AIR TC CALCULATE 1/3 CROER *
FANKEZL FUNCTIONS FRCM AIRY FUNCTIONS. )

Cttk-'tﬁttt:aattntﬁﬁttﬂ:tnttttﬁ'*tttaitﬁtﬁﬁaitattﬁttﬁitttttﬁittﬁittti

[N aN ol al

laXakalsRakskaliRskakeleRaN g ol QN ol

IMPLICLIT ZQUBLE PRECISION (A=-w,0-2)
COMPLIX®1E 2,871,81,A02P,3IF K, KS,HT,H2/,HTT,H21
COMPLEX*T1e ARG,CI

COMMON JOCNST/Z CL,PI

ARG = CCMPLX(C.03,-P1/6.00)
X 2 (12.2G)*=(1.20/7€6.C0)+CIEXP(ARG)
K3 = ZCONJG(K)

CALL CGRAIR(-1,31,281,AIP,8IP,1IREG)
nl Ke(AI-CI=21)

ne = KS=(a1+*(Ixz1)
n11 = =X»(AIP=-CI==ZIP)
ng1 = =XS=(AIP+CI*dIP)
RETURN

END

SUSROUTINE CGEAIR(I,AI,BI,AIP,BIP,IREG)
tlitttlQQIt'.i!i**itl!!tﬁttl**it'ttﬁ*t'tﬁfiiﬁ’..ﬁ”ﬁﬁ”tﬁﬁii.tﬁ"'
CALUULATE AIRY FUNCTICNS FCR CCMPLEX®*1& ARGUMENT

KEF. ~ANJBCCK OF MATHEMATICAL FUNCTICKNS, ABRAMOWITZ AND STEGUN.

ENTRY:

CALCULATE ARGUMENT(Z) ANC ASSCLUTE VALUE(Z)

iF 11/ LT 6
THEN USE EaSe. 1C.4e2 THRU 10.4.5 FOR AI,BI,AIP,EIP
1G EusE IF ARG(Z) LT PI/3
THEN CALCULATE ZETA(Z)
USE EaSae 1044459, 10.4.61, 10.4.63, 10.4.66 FOR Ax,ex,AIP,axv
20 &LSE CALCULATE ZETA(-1)
USE 2G5. 10.6.60, 1C.6.62, 10.6.64, 10.4.67 FOR lI:BI:AIP:BIP'
*

L BN R BRI BN R N SR 4

ENQIF
cNDIF : »
12.9%1 . ‘ *
END *

AR R AR AR RN AR AN AR R R R R P A RN R AR AR IR AR RN AN R AR RAN RN RAARARAARAN RS
IMPLICIT CQUBLE PRECISION (A=M,0~-1)
CCMMON /CCNST/ CI,PI '
COMPLEX%16 L,AL,B1,AIP,BIP,LETA,CIETA,Z14,SUMT,SUM2,SUN3,SUNS,
1 LETAP,FACT1,FACT2,SN,CSoFTERM, FPTERM,GTERM,GPTERM,F/FP,G,GP /13
COMPLEX*16 VZETA,VIETAP,C]
DIMENSION C(21),0(€21)
CATA C1,C2,PIRT,P14/. 355028053900:.258819403800;1 77245385100,
+ .735398163500/
PIRT=CSQRT(PI)
CATA C/71.90,.069646464444444440C,
+ JC371334876542210C,.0279930591278C000.
1 .05764691904126690C,.116099C64G255100,

Y
J L o e
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.2915913992307600:.87766696950998E0:
3.079453030173100,12.341573332345¢C0,
55.62278536591400,278.465C8077759¢C0,
1533.169432012790,9207.2065997258L0,
56892.51356587500,419524.87511653C0,° MR
3148257.417866600,2515891$.871601C0»
214288036.9636600,1929375549.1823C0.
18335766927.88900/ T
JATA C/1.00,
-.097222222222221C0,~.C4388503CR4419700,~.04246283078989400.,
~.06266216369203120,-.12410586£0272700,~.3082537649010700,
~e920479952412910C,~3,210493584448500,~12.80729308073500,
-57.5C82025139110C,-287.0332371092000,-1576.357303337000,
=74465.35482309530C,-51335.70466284700,-428952.4004000400,
-3214536.5214C060C,~-25¢575C8.2536(500,-218293420.8321400,
~1963523788.95C90C,~1£4£43531086.1C5007
ABSZ = AES()
IF(A3S8Z.8Q.0) GO TQ 3
IFC(A3S(OIMAG(Z)) eLEL1.C-12.AND «DREAL(Z).LT. 0.C0) GO YO S
ARGZ = CATANZC(OIMAG(Z),DREAL(Z))
G0 TO &
ARGZ = C.20
GC T0 & oo e T -
ARGL = °1
CONTINLE
1F(ABSZ.5T.6.C0Q0) ¢C TC 10 o Tt . . o
1reg=1
ASCENCING SERIES
Eulde 1044.2,1C.4,.2 oo T

CONTINUE

i3 = [*%]}

FTERN = T.00

FPTIRM= 2x7/24,00

GTERM = [

GFTERM= 1.007 T e e T T T e
GLIM = 1.0-132A8352

F = FTERNM

FP = FPTERM — T T s e LT T e TotTme s
[ = GTERM

oP = GPTERM

KKKT = 1CO 1" "ACJUST XKKT TQO INSURE CONVERGENCE IFf NECESSARY

G0 1 I=1,KKKT

13 = 3al

FTERM = FTERMEII/ZC(I3-1.DCYeI3y - —om oo e
FFTERM=FPTERM#Z3/(I32(13+2.00))

GTEZRM = GTERM#237(132(13+1.00))

" GPTERM=GPTERMAZ3/((13-2.0C)*1I2) T T e o e e

F = F+FTERN
FP = FP+FPTERM
G x GHCTERN o S

oP = GP+GPTERM

IFCCDABS(GTERM) .LE.GLIN) GO T0 2

CONTINUE e e e e o e e
PRINT 60C0, 1

FORMAT(/” 22°2€14.5,° ERROR IN CGEAIR, NONCONVERGENCE®)

Al BTCINF=02eG R S
AIP = CIsFP=C29Gp : . -

8I = 1.732CS508C30Q#(CTIoR4C206)

“BIPT = 1. 732050!05000(Cf'FFiClﬁGl)~'”“’“““"“ T e

G0 T0 §999
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ASYMPTCTIC SXPANSIONS FCR /I/ LARCE
SIGN = 1.00

suMt = 0.00
suM2 = 0.00
SUm3 = 0.00 - ) T )

SUMé = Q.00

IF(A3S(ARGZ) .GE. PI/3.00) GO TO 20
ireg=2 '

/ARG(Z)/ LE P1/3

£ede 1Ce4e39, 10.4.67, 10.4.63, 10.4.66

LETA = CIETACABSZ,ARGY)
JC 11 I=1,1¢
K = I-1 B
czTAP = 1Z3TAaxxX
S = SUMT+SIGN*C(I)/2ETAP
SiM2 = SUME+SISAN=C(I)/2IETAP N
SLM3 = SUM3+C(I)/slETAP
JuMé = SUMGtR(I)/LETAP
sion = =SIGN -
Cantirue
e = A3SZ =*,2303 *» JCMPLX(COSCARGZ/4.D0),SINCARGZ/4.00))
FACTT = ,320* COExXP(=IEZTAY/(PIRT+114)
FACTZ = .50Q0% COEXP(~-ZETA)*I14/PIRTY
Al = FACTI=SuM1
aiP = =FACT22SLM2
FACTYT = COZXP(IZETA)/(PIRTAIL)
FACT2 = COEXF(ISTAI=L14/FIRY
o1 = FACT1=SUMZ
ol = FACTZ*SUMG
ac TG 3995
/ARG(Z)/ 5T PL1/3 MQTE CHANGE ABOVE
€e3e 10.4.60, 10.,4.62, 10.4.64, 1C.06.67
CCNTINUE
ireg=3
ARSI = DATANZ(-JIMAG(LY,-DREALC(Z}] ~ t T
1cTA = CLZTACARSZI,ARGI)
vIETA = 1.,2C/1:TA
LLL = 10
00 21 I=1,LLL
K2 = (I=1)22
3 B K24]7 mo e e e
VIETAP = VIETAwxxK?2
SUM1 = SUNT+SIGN*CC(J)*»VIETAP
SUM2 = SUMZ+(SIGN*CC(J+1)*VIETAP+VZIETAY
SUM3 = SUMI+(SIGN*C(J)=VZETAP)
SUMG 2 SUMO+(SIGNAC(J+T1)2VZETAP+VZIETA)
SIGN = =-SIGN ) o T
Continue N
114 = ABSI»*».Z2500+DCMPLX(COSCARGI/4.DC),SINCARGLZ/4.D0))
FACT1 = 1.0C/7(PIRT=214) ' )
FACTZ2 = 114/PIRT
SN = SINCIETA+PI/4.00)
CcS = COS(IZETA+PI/4.D0C) TTrmtmmemo T
Al = FACTI®(SNASUMT~CS*SLM2)
AIP = =FACTZ22(CS*SUMI+SN2SUMS)
8l = FACTI~(CS*SUMT#SK=SUM2) ™~ oo
344 = FACT2#(SN*SUM3-CS*SUML) . -
e
- 1 e e e e e e e ot et st kB it emen s
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RETURN
END -
C . - ot a2 e —— e - .
C ' . -
C BEGIN OF FUNCTIONS USEC ABOVE
C e . e e — -
C
FUNCTION CZETA(ABSZI,ARGY)
IMPLICIT COU3SLE PRECISION (A=-H,0-17)
CCMPLEX*146 CZETA
ARG = ARGZ=1,50C
CIETA = (ABSZ»#«1,ZCO)=CCMPLX(COS(ARG),SINCARG))I» . 8868666666666700
RETURN
ENJ
o
C
C &ML OF FUNCTICNS LSED ABOVE.
< -
C
C
C
%
SUBRJUTINE 4“ALL2(I,H2,h1,IREG)
C R X AR A AR AN N RN RN A AN AR AR R AR T AN R R RN R NN AR AN RN AR AR AR AR R R
. C nmALLZ USES SUBRQUTINZ CG3AIR TC CALCULATE 1/3 ORDER *
C FAMKEL FUNCTIONS FRCM AIRY FUNCTICONS. NCT THE *
C CERIVATIVES AS HALL CCES. *
CAR AR A AN R R A A AR R AT AR AR R A AR R A ARR AR RRNR AR RN R AR R AN AN NRANRE NN R

IMPLICIT COUSLE PRECISICN (A-v,C~2)
COMMCN /CONST/ CI,PI
CCMPLIX*18 21,81,31,A1P,3IP,K,KS,HT,H2,H11,H21

CCMPLEX*16 ARG,CI
.‘ CCMPLEX*#16 3ETA -
ARG = DCMPLX(Q.DC,=PI/6.CC)
'3 = (12.00)**(1.00/£.0C) #CDEXP (ARG)
kS = JCONJG(K) -
CALL CGSAIR(-2,2I,31,AIP,B1P,1REG)
n1 = K« (AI-CI*3I)
n2 = KS*#CAT+CI*EL) T
RETURN
END
g C
c e
c
c N - . . -

SUBROUTINE HANKEL

I A R R R E R R A R R R S R SR R 2 R RS R R 2R 2R 2 Z R R R R R S R R E X R R F PR R 2 2R 2 2 R 2 R X2 20222 RR
SUBROUTINE TO ACCLRATELY CC THE HANKEL TRANSFORM CF THE SOUND »
PRESSURE LEVEL. L 4
FONP)=GBAR(NP) MUST EE SAMPLED AT NP POINTS WITM K=(N=1,ALP) N
ALP REPRESENTS THE DISTANCE ABOVE THE REAL AXIS THE FUNCTION WILL #
8E INTEGRATED. N
NS IS A PARAMETER REFRESENTING ADDITION OF AN AMALYTICAL FUNCTION
TQ FONPY ———i— e e e .

M IS THE NUMBER CF TERMS USED TG APPROXIMATE FCNP) TO INFINITY »
t'.‘itt.ﬁ'.iﬁﬁﬁ.ﬂﬁiiiﬁi"t*ﬁﬁﬁi."iﬁQ..".’QQ.....".’ﬁ"f’."..'ii.ﬁ.
® INPLICIY DOUBLE PRECISION (A-Ho0-33" 7
COMMON JCONSTZ CHPILPI

[aXaNaNaNaNaNaNaNal ol
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CCMMCN /MAIN/ F

COMMCN /INTEG/NS,ME,NY OF POOR QUALITY
COMMCN/AFBRIN/ALF,QELBETA
COMPLEX®T1S F(327€8),CF,CARGASUM,FNP,CMPI,D1
ALP -ALP v necessary to wmatch attenberough®s definition ¢f alp
NP N1
JELK OELBETA
SLETRACT THE ANALYTICAL FUNCTICN IF NS > ZERO
ACJUSTING THE 3SUBTRACTION MULTIPLIER CF
IF(NS.LELQ) GCTO 11
CFE = CCMPLX(Q.LC,0.C0)
IF (ALP.ZaeCaC) THEN
CF = CFLCAT(N®)/COFLCATINS)
CF = CFaF(2)
END IF
IF (ALPONZWLJ.3) TrEN
CE = CMPISCFLOAT(NRY=F(1)/(ZFLCATI(NS) »ALP)
END IF
SLETRACT THE ANALYTICAL FULNCTICN IF NS>0
CC 1C,I1=21,NP
1 JCUPLX(CRLCAT(Z=-1),(=ALP))
CARG2 CPRLTAT(NS)*(=C1)/CFLOATINF)
=) FCIY=Cro»(1.C2-C2EZXP(CARG))
1u CONTINYE
11 CONTINUE
IFCALPLES.0.C0) (1) =CCMPLX(0L.C0,C.00)
FNP = FINS)
0 12,222/,NP
01 = JCMPLX(DFLCSAT(I-1),(~aLP))
ECI)= F(IX/(LDSIRTLCTY)
1< CuNTINGE
IFCALP.NZLCL0) F(1)=F(1)/CCSSRT((=CMPI)*(ALP))
IM3 TC INEINITY IF MEDQ
IF(MELLTL1) GCTO 20
SC 15,1=1,NP
o1 = SJCMPLXC(DFLCAT(I=1)Y,(-ALP))
CF = J1/CEL0ATINP)
CALL ZeTA(NP,ME,LF,SUM)
FOLI)= FCI)+FNP®SUM
15 CONTINUE
20 CONTINUE
0C The FFT
CALL FORK(NP,F,1)
AQL ALTERNATE TERMS TO GIVE NP/2 SAMPLES TRANSFORMED
CF = DELK*CFLOAT(NP)®(CLSSRT(-CHMPI))/(2.002P1)
0 i5+1=2,NP72  °
A = CEXP(OFLOAT(I~-1)+(ALPY*2 CO*PI/DFLOAT(NP))
FCI)2 A%F(I)*CMFI*F{NP~TI42)/A
FOI)= FCID*CF/DSQRT(CFLCAT(I-1))
25 CONTINUZ
RETURN
END

"N

a0 7

SUBRCUTINE FCRK(LX,CX,SIGNID
AR AR AR RN AR R R AR R RN R R A RN R R AR AR AR AR AR AR SN RN R PO N IR ARSI RN AN N RN RS

A FAST FFT GIVEN 2Y J.F. CLAERBQUT, "FUNDAMENTALS QF GEQPHYSICAL »
CATA PROCESSING" *
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Cttﬂttﬁtttﬁiifitt.tti'ﬁ".tt'.iﬁ.tt'i"ﬁ.iiit*..ii.ﬁi’ﬁﬁ'ﬁttiiﬁﬁittﬁi
IMPLICIT DOUBLE FRECISION (A-H,0-1)
COMMCN /CONSTZ CrprPI, P2
COMPLEX*#16 CXC(LX),CARG,CW,CTEMP,CI,DUNTI,CHPI
INTEGER SIGNI =~ T ) - ’ U
J = 1 :
sC = DSQRT(1.00/0FLOATCLX))
00 3C,I=T,LX 7 T T
IF(1.6T.Jd) GOTQ 10
CTEMP = CX(J)*S(
TCX(dY = CX(I)=SC - o T
CX(I) = CTEMP
M=LX/2
IF(J.LELM) GCTO 3C ’ T
J=M
n/2
«1) GCTO 20
J*M
3

n) =
<O

IF (M,
3
L

(1}
# 0 ma w

4d . IS3TER=Z»t B

Cd sC,M=1,L
CARG=CMPI*PI*DBLE(SIGNL)*C3LEC(M=1))/0BLECL)
Ch=CCEXP(CARG)

30 SCrI=MsLX,ISTEP

CTEMP= Cuw=CXC(I+L)

CXCI+L)=CX(I)-CTEMP

CXUIXI=CX(I)+CTEMP

e
c

L=I3TeP

IFCL.LTLX) GCTO 4C
RETURN

IND

OO0

SUSRCUTINE ISTA(NP,M,A,SLN)
I EEERERE RS SRR RS R R R R R R 2 22222 R R R R P R R R R 2222 22 )
SUBRCUTINE TC AQDC THE NECESSARY TERMS TO
SXPRESS INVERTIBLE FUNCTION YO INFINITY,
wILL USE DOUBLE FPRECISION.
SUM=SUM OF 1/(NPA.S)*T1/7((J+K)*2,S) FOR J=1 TC
INFINITY MINUS SOME CONSTANT WHICH IS
iNDEPENCENT OF A,
RARRAATANR R R R AN NN AR AR RN A RN R AR R AR AR AR AR O AR R
IMPLICIT DQUBLE FRECISION (A=M,0-1)
COMPLEX*16 A,SUM/T2
02 = JCMPLX(DFLOAT(M),C.CQ)
SUM = 1.00/7(M*a)
SUM = 2,D00%(DSQRT(DFLOAT(M))=1.CO/COSQRTCSUN))
H “0e5+COSQRT(SUM) = (T, C+SUM*({1.0/12.0-SUN+*SUM/192.0))
<0 1C,J=1,M
SUM = SUM*1.D0/COSQRT(J+A)
19 CONTINUE T T T I T T s e e
SUM = SUM/DSQRT(CFLCAT(NP))
RETURN

END T T o o s e e <t e o+

[aNaNaNaNaR ol o N o

[aNaNeNg]

: -

R .
O e e s s ool . < o e —— o
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SUBRCUTINE PRINTALL(CCELBETALN)

RXRRA XA AR AR R R A RN RN AR R AN AN RN AN DR AR AA R ANRN B AR RRNRANN AR

* *
* SUBROUTINE TO PRINT THE RESULTS OF THE *
x HANKZL TRANSFORM TOQ THE FILE FORCA4.OAT *
- *

(A SRR R R RS R RS R Y Y Y Y R S R 2 232 222 )

IMPLICIT OOUBLE FRECISION (4-H,0-1)
COMMCN /LCNSTY CI,PI

CCOMMCN /MAINZ F

COMPLzZX=1s £(207£43).,C1

CO 1CC,I=1/,N/2

1Al = 2,20»FI» CFLCSAT(I=1) / ¢ CFLOAT(N)*DELBETA )
IF (RAD 5T. J.0) THEN
DECIZLE = 2C.CC ~ CLOG1C(CCABS(F(I)))
XAz = JLOGIC(RAD)
WRITI («3,502) RAJ,RAD2,CECIZLE
InND IF
CONTINUE
FCRMAT (3x,3G15.7)
xETURN
zND
SUSACLTINEG RZIGICAN_SINC (ANG,RT1,RT2)

I EASAAAAS S AN SRR SRR R R XS R 22 R 2 2 2 R R E R E P R S P R X R R R R 2R R}

» L]
* Tnis sucrcutine cdetermines whrere region changes *
= in tre 32/2 function take plzce. The routine will *
* te c2llac by the main pregram and will return *
* tne variztles RS1,RS2,RIT1,R22,R01 and¢ RO2 which *
* are the values of beta where region changes cccur *
* *
* »

LAA RS EEEESELRLESRRRARSARRRLEl R 2 AR R R R R R R R R YRR R A ]

IMPLICIT JCuBLe FRECISION (A-4,0-2)

CCMMCN /CONST/ (CI,PL

COMMCN /CONST1/7 SPEED,CMEGA

COMMCN /CONST2/ ALPHA,DTCT

COMMON /CONSTI/ 1,IREF,S

CUMMCN /REGICN/ RST1,RS2,RZ1,R12,801,R02

COMMCN /AFB2IN/ FGHT,CELESTA ’

COMMCN /INTEG/ ANS,ME,NDPTS

COMPLEX*16 3,CI

CIMENSION RSC3),R2(3),RQ(3)

print *,”first rcot is’,RT1

print =,"saecend root “,RT2

nLIM RT2 » 1.C100

BLIM REAL(INT(.95CO*RTT1/DELBETA)) ~ DELBETA

HGHT*DELRETA

a e L e - .

c

0 .
3 DCMPLX(BLIM,H) T

ALL G32REGION(S,B,I,ANG,PS1) . o

O®X LI
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35

()RICHT{AI: Iﬂ&cu; ES
()F PCX)R (QLD&LJTﬁa

CALL GICREGICN(Z,3,J,ANG,P11)

CALL G3I2REGICN(O,B8,X,ANG,PO1)

R3(I) = REAL(B)

RL(J) = REAL(B)

RO(X) = REAL(3)Y ~ ' T

3 = 8 + CEL3ETA

IF C(C(OREALC3) .LE. MLIM) JANC, (I4J¢K LT, 9)) GOTO 10
grint *,1,J,K

IF (I+J+K LT, JFIPRINT »,°

R31=x3(1)

RS2=R3(2)

RIT1=RI(1)

R12=RI(2)

RO1=RC(1)

RS2=RT(2)

NT = ZINTC(MINC(RSZ,RZZ2,RC2)=RO1)/DELBETA)

if (nt (5te C) tren

PRINT *,°ast. Mirimum nurber af goints in region 2 is”“,NT

ena 1f

print =, RS1,R5:2 “sR51,RS2

srint *,"21,R22 C/RIT1,R22

grint =, RC1,RC2 *sRC1,RC2

KETUAN

aND

REGION BOUNDARY NOT DETECTED.,’

SUBRCUTING G3I2RECGIONCZ,B,L,ANG,PT)
LR AR N R A I I I NI
* SUBROUTINE TC CZTERMINE 632 FUNCTION AND WFERE REGION CHANGES QCCUR #
R e T Y N I I I T I
IMPLICIT OCU3LE FRZICISION(CA-Y,0-7)
COMMIN /CONSTYZ (1P
COMPLEX*16 3,532,C1
CALL 532aLl(2,8,€22)
£ = DATAN2(OIMAG(GI2),0REAL(C22))
IFf (P2 .6T. C.D0) P2=pP2-22P]
IF (L <EC. 0) THEN

L=1

3070 1

END IF
IF ((P1 .LT., ANG  .ANC. P2 .GE. ANG) .OR.

(P1 .GE. ANG  .AND. P2 .LT. ANG)) LEL+t
F1 = P2 -
RETURN

e

END -

SUIRSUTINE REGION (BETALIREGICN)

NRRERR R AR A RARNN T A AR RN R R RARRRAAANARRN AR AN RN AR AARANA RN RSN ARRN R R AR

* This sudbroutine will determine shich region is *

* currently being addressed by tWNe progras - *

L2 2R R RS E R RS 2R 22 R R R R R R R R R R R XY S X N Y22 22 22 R 2R 2223222222
IMPLICIT OOQUBLE FRECISIONCA-H,0-1) o

COMMON JLONSTY3/ 1,IREBF,S T~ ot e CTtomrrm T
COMMCN /REGION/ RST1,RS2,RI1,R12,R01,R02

COMMON /AFBR2IN/ hGHTaDELlEl}

COMPLEX»16 8ETYL ’H~“"~%ﬁm~tfﬁlwtmﬂfﬁwﬁu>"H“’»_ o -
3 = OREALCSETA)-DELBETA/S.00 , . . L.
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IF (I .GT. S) THEN

IF ((8 «.GT.

IF ((8 LGT.

IF ((8 .6GT.
ELSE

IF (8 .G6T.

IF ((B .GT.

IF ((8 .GT.
END IE

RETURMN

END

RO1)
RS1)
RI1)

RO
RZ1)
RST)

«ANC.
«ANC.
«AND.

«ANC.
«ANC.
«ANC.

ORIGINAG PAGE I3
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(e
(g
(e

(8
(2
(8

111

ILEI
«LE.
.LEI

.LE.
«LE.
ILE‘

RC2))
RS2))
R22))

RC2))
R22))
RS2))

IREGION
IREGION
IREGION
IREGION

IREGIOQN
IREGION
IREGION
IREGION

RV N

wmee~NN



